
Symbol Table
ALSU Textbook Chapter 2.7 and 6.5

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1

Definition

Symbol table: A data structure used by a compiler to keep

track of semantics of names.
• Data type.
• When is used: scope.

. The effective context where a name is valid.

• Where it is stored: storage address.

Operations:
• Find: whether a name has been used.
• Insert: add a name.
• Delete: remove a name when its scope is closed.

Compiler notes #5, 20070608, Tsan-sheng Hsu 2

Some possible implementations

Unordered list:
. for a very small set of variables;
. coding is easy, but performance is bad for large number of variables.

Ordered linear list:
. use binary search;
. insertion and deletion are expensive;
. coding is relatively easy.

Binary search tree:
. O(log n) time per operation (search, insert or delete) for n variables;
. coding is relatively difficult.

Hash table:
. most commonly used;
. very efficient provided the memory space is adequately larger than the number

of variables;
. performance maybe bad if unlucky or the table is saturated;
. coding is not too difficult.

Compiler notes #5, 20070608, Tsan-sheng Hsu 3

Hash table

Hash function h(n): returns a value from 0, . . . ,m− 1, where n
is the input name and m is the hash table size.

• Uniformly and randomly.

Many possible good designs.
• Add up the integer values of characters in a name and then take the

remainder of it divided by m.
• Add up a linear combination of integer values of characters in a name,

and then take the remainder of it divided by m.

Resolving collisions:
• Linear resolution: try (h(n) + 1) mod m, where m is a large prime

number, and then (h(n) + 2) mod m, . . . , (h(n) + i) mod m.
• Chaining: most popular.

. Keep a chain on the items with the same hash value.

• Quadratic-rehashing:
. try (h(n) + 12) mod m, and then

. try (h(n) + 22) mod m, and then

. · · ·

. try (h(n) + i2) mod m.

Compiler notes #5, 20070608, Tsan-sheng Hsu 4

Performance of hash table

Performance issues on using different collision resolution
schemes.
Hash table size must be adequately larger than the maximum
number of possible entries.
Frequently used variables should be distinct.

• Keywords or reserved words.
• Short names, e.g., i, j and k.
• Frequently used identifiers, e.g., main.

Uniformly distributed.

Compiler notes #5, 20070608, Tsan-sheng Hsu 5

Contents in a symbol table

Possible entries in a symbol table:
• Name: a string.
• Attribute:

. Reserved word

. Variable name

. Type name

. Procedure name

. Constant name

. · · ·
• Data type.
• Storage allocation, size, . . .
• Scope information: where and when it can be used.
• · · ·

Compiler notes #5, 20070608, Tsan-sheng Hsu 6

How names are stored

Fixed-length name: allocate a fixed space for each name
allocated.

• Too little: names must be short.
• Too much: waste a lot of spaces.

NAME ATTRIBUTES STORAGE ADDR ...
s o r t
a
r e a d a r r a y
i 2

Variable-length name:
• A string of space is used to store all names.
• For each name, store the length and starting index of each name.

NAME ATTRIBUTES STORAGE ADDR ...
index length

0 5

5 2

7 10

17 3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

s o r t $ a $ r e a d a r r a y $ i 2 $

Compiler notes #5, 20070608, Tsan-sheng Hsu 7

Handling block structures
main() /* C code */
{ /* open a new scope */

int H,A,L; /* parse point A */
...
{ /* open another new scope */
float x,y,H; /* parse point B */
...
/* x and y can only be used here */
/* H used here is float */
...

} /* close an old scope */
...
/* H used here is integer */
...
{ char A,C,M; /* parse point C */
...
}

}

Nested blocks mean nested scopes.
Two major ways for implementation:

• Approach 1: multiple symbol tables in one stack.
• Approach 2: one symbol table with chaining.

Compiler notes #5, 20070608, Tsan-sheng Hsu 8

Multiple symbol tables in one stack

An individual symbol table for each scope.
• Use a stack to maintain the current scope.
• Search top of stack first.
• If not found, search the next one in the stack.
• Use the first one matched.
• Note: a popped scope can be destroyed in a one-pass compiler, but it

must be saved in a multi-pass compiler.
main()
{ /* open a new scope */

int H,A,L; /* parse point A */
...
{ /* open another new scope */
float x,y,H; /* parse point B */
...
/* x and y can only be used here */
/* H used here is float */
...

} /* close an old scope */
...
/* H used here is integer */
...
{ char A,C,M; /* parse point C */
...
}

}

H, A, L
S.T. for

H, A, L
S.T. for

S.T. for
x,y,H

H, A, L
S.T. for

S.T. for
A,C,M

parse point A parse point B parse point C

searching
direction

Compiler notes #5, 20070608, Tsan-sheng Hsu 9

Pros and cons for multiple symbol tables

Advantage:

• Easy to close a scope.

Disadvantage: Difficulties encountered when a new scope is

opened .

• Need to allocate adequate amount of entries for each symbol table if
it is a hash table.

. Waste lots of spaces.

. A block within a procedure does not usually have many local variables.

. There may have many global variables, and many local variables when
a procedure is entered.

Compiler notes #5, 20070608, Tsan-sheng Hsu 10

One symbol table with chaining (1/2)

A single global table marked with the scope information.

. Each scope is given a unique scope number.

. Incorporate the scope number into the symbol table.

Two possible codings (among others):
• Hash table with chaining.

. Chaining at the front when names hashed into the same location.main()
{ /* open a new scope */

int H,A,L; /* parse point A */
...
{ /* open another new scope */

float x,y,H; /* parse point B */
...
/* x and y can only be used here */
/* H used here is float */
...

} /* close an old scope */
...
/* H used here is integer */
...
{ char A,C,M; /* parse point C */
...
}

}

H(1)

L(1)

A(1)

H(2)

symbol table:
hash with chaining

H(1)

L(1)

A(1)

parse point B parse point C

x(2)

y(2)

C(3)

M(3)

A(3)

Compiler notes #5, 20070608, Tsan-sheng Hsu 11

One symbol table with chaining (2/2)

A second coding choice:
• Binary search tree with chaining.

. Use a doubly linked list to chain all entries with the same name.
main()
{ /* open a new scope */

int H,A,L; /* parse point A */
...
{ /* open another new scope */

float x,y,H; /* parse point B */
...
/* x and y can only be used here */
/* H used here is float */
...

} /* close an old scope */
...
/* H used here is integer */
...
{ char A,C,M; /* parse point C */
...
}

}

H(1)

L(1)A(1)

H(2)

parse point B parse point C

x(2)

y(2)

H(1)

L(1)A(1) A(3)

C(3) M(3)

Compiler notes #5, 20070608, Tsan-sheng Hsu 12

Pros and cons for a unique symbol table

Advantage:
• Does not waste spaces.
• Little overhead in opening a scope.

Disadvantage: It is difficult to close a scope.
• Need to maintain a list of entries in the same scope.
• Using this list to close a scope and to reactive it for the second pass if

needed.

Compiler notes #5, 20070608, Tsan-sheng Hsu 13

Records and fields

The “with” construct in PASCAL can be considered an
additional scope rule.

• Field names are visible in the scope that surrounds the record declara-
tion.

• Field names need only to be unique within the record.

Another example is the “using namespace” directive in C++.
Example (PASCAL code):

A, R: record
A: integer
X: record

A: real;
C: boolean;

end
end

...
R.A := 3; /* means R.A := 3; */
with R do

A := 4; /* means R.A := 4; */
...

Compiler notes #5, 20070608, Tsan-sheng Hsu 14

Implementation of field names

Two choices for handling field names:
• Allocate a symbol table for each record type used.

A record

recordR

main symbol table

A integer

recordX

A real

booleanC

another symbol table

another symbol table

A integer

recordX

A real

booleanC

another symbol table

another symbol table

• Associate a record number within the field names.
. Assign record number #0 to names that are not in records.
. A bit time consuming in searching the symbol table.
. Similar to the scope numbering technique.

Compiler notes #5, 20070608, Tsan-sheng Hsu 15

Locating field names

Example:

with R do
begin

A := 3;
with X do

A := 3.3
end

If each record (each scope) has its own symbol table,
• then push the symbol table for the record onto the stack.

If the record number technique is used,
• then keep a stack containing the current record number;
• During searching, succeed only if it matches the name and the current

record number.
• If fail, then use next record number in the stack as the current record

number and continue to search.
• If everything fails, search the normal main symbol table.

Compiler notes #5, 20070608, Tsan-sheng Hsu 16

Overloading (1/3)

A symbol may, depending on context, have more than one
semantics.
Examples.

• operators:
. I := I + 3;
. X := Y + 1.2;

• function call return value and recursive function call:
. f := f + 1;

Compiler notes #5, 20070608, Tsan-sheng Hsu 17

Overloading (2/3)

Implementation:
• Link together all possible definitions of an overloading name.

• Call this an overloading chain.

• Whenever a name that can be overloaded is defined:
. if the name is already in the current scope, then add the new definition

in the overloading chain;
. if it is not already there, then enter the name in the current scope, and

link the new entry to any existing definitions;
. search the chain for an appropriate one, depending on the context.

• Whenever a scope is closed, delete the overloading definitions defined
in this scope from the head of the chain.

Compiler notes #5, 20070608, Tsan-sheng Hsu 18

Overloading (3/3)

Example: PASCAL function name and return variable.
• Within the function body, the two definitions are chained.

. i.e., function call and return variable.

• When the function body is closed, the return variable definition disap-
pears.

[PASCAL]
function f: integer;
begin

if global > 1 then f := f +1;
return

end

Compiler notes #5, 20070608, Tsan-sheng Hsu 19

Forward reference

Definition:
• A name that is used before its definition is given.
• To allow mutually referenced and linked data types, names can some-

times be used before that are declared.

Possible implementations:
• Multi-pass compiler.
• Back-patching.

. Avoid resolving a symbol until all possible places where symbols can
be declared have been seen.

. In C, ADA and languages commonly used today, the scope of a dec-
laration extends only from the point of declaration to the end of the
containing scope.

If names must be defined before their usages, then one-pass
compiler with normal symbol table techniques suffices.
Some possible usages for forward referencing:

• GOTO labels.
• Recursively defined pointer types.
• Mutually or recursively called procedures.

Compiler notes #5, 20070608, Tsan-sheng Hsu 20

GOTO labels

Some language like C uses labels without declarations.
• Implicit declaration.

Example:

[C]
L0:

...
goto L0;
...
goto L1;
...

L1:
...

Compiler notes #5, 20070608, Tsan-sheng Hsu 21

Recursively defined pointer types

Determine the element type if possible;
Chaining together all references to unknown type names until
the end of the type declaration;
All type names can then be looked up and resolved.

• Names that are unable to resolved are undeclared type names.

Example:

[PASCAL]
type link = ^ cell;
cell = record

info: integer;
next: link;

end;

Compiler notes #5, 20070608, Tsan-sheng Hsu 22

Mutually or recursively called procedures

Need to know the specification of a procedure before its
definition.

• Some languages require prototype definitions.
Example:

procedure A()
{

...
call B();
...

}
...
procedure B()
{

...
call A();
...

}

Compiler notes #5, 20070608, Tsan-sheng Hsu 23

Type equivalent and others

How to determine whether two types are equivalent?

• Structural equivalence.

. Express a type definition via a directed graph where nodes are the
elements and edges are the containing information.

. Two types are equivalent if and only if their structures (labeled graphs)
are the same.

. A difficult job for compilers.

entry = record [entry]
info : real; +-----> [info] <real>
coordinates : record +-----> [coordinates]

x : integer; +----> [x] <integer>
y : integer; +----> [y] <integer>
end

end

• Name equivalence.

. Two types are equivalent if and only if their names are the same.

. An easy job for compilers, but the coding takes more time.

Symbol table is needed during compilation, and might also be
needed during debugging.

Compiler notes #5, 20070608, Tsan-sheng Hsu 24

Usage of symbol table with YACC

Define symbol table routines:
• Find in S T(name,scope): check whether a name within a particular

scope is currently in the symbol table or not.
. Return “not found” or
. an entry in the symbol table;

• Insert into S T(name,scope)
. Return the newly created entry.

• Delete from S T(name,scope)

For interpreters:
• Use the attributes associated with the symbols to hold temporary

values.
• Use a structure with maybe some unions to record all attributes.
struct YYSTYPE {

char type; /* data type of a variable */
int value;
int addr;
char * namelist; /* list of names */

char * name; /* id name */
}

Compiler notes #5, 20070608, Tsan-sheng Hsu 25

YACC coding: declaration I

Declaration:
• D → L V

. {use Find in S T to check whether $2.name has been declared;

. use Insert into S T to insert $2.name with the type $1.type;

. allocate sizeof($1.type) bytes;

. record the storage address in the symbol table entry;

. $$.type = $1.type;}
• L → L V ,

. {use Find in S T to check whether $2.name has been declared;

. use Insert into S T to insert $2.name with the type $1.type;

. allocate sizeof($1.type) bytes;

. record the storage address in the symbol table entry;

. $$.type = $1.type;}
| T

. {$$.type = $1.type;}
• T → int

. {$$.type = int;}
• V → id

. {save yytext into $$.name;}

Compiler notes #5, 20070608, Tsan-sheng Hsu 26

YACC coding: declaration II

Declaration:
• D → T L

. {append each name in $2.namelist into symbol table, i.e., use
Find in S T to check for possible duplicated names;

. use Insert into S T to insert each name in the list with the type
$1.type;

. allocate sizeof($1.type) bytes;

. record the storage address in the symbol table entry;}
• T → int

. {$$.type = int;}
• L → L , V

. {insert the new name $3.name into $1.namelist;

. return $$.namelist as $1.namelist;}
| V

. {the variable name is in $1.name;

. create a list of one name, i.e., $1.name, $$.namelist;}
• V → id

. {save yytext into $$.name;}

Compiler notes #5, 20070608, Tsan-sheng Hsu 27

YACC coding: expressions and assignments

Usage of variables:
• Assign S → L var := Expression;

. {$1.addr is the address of the variable to be stored;

. $3.value is the value of the expression;

. generate code for storing $3.value into $1.addr;}
• L var → id

. { use Find in S T to check whether yytext is already declared;

. $$.addr = storage address;}
• Expression → Expression + Expression

. {$$.value = $1.value + $3.value;}
| Expression− Expression

. {$$.value = $1.value − $3.value;}
· · ·
| id

. { use Find in S T to check whether yytext is

. already declared;

. if no, error · · ·

. if not, $$.value = the value of the variable yytext}

Compiler notes #5, 20070608, Tsan-sheng Hsu 28

