
How to Write a Compiler

Tsan-sheng Hsu

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu

1



Planning

The best and complete way to learn to write a compiler is to
• take a compiler course for the “theory”,
• read the code of a compiler, and then
• write a compiler by yourself.

The planning stage:
• Source language issues:

. The size of the language.

. Will the language evolve?

• Target language issues:
. Instruction set.
. Registers.
. Fancy instructions.

• Performance criteria:
. Changes come from the hardware development.
. Portability.
. Error correction: for both expert and novice users.
. Optimization.

Compiler notes #9, 20070530, Tsan-sheng Hsu 2



Developing

Find an existing language and adapt it for your needs.
If you read some UNIX C (respectively PASCAL) compiler, they
are written in C (respectively, PASCAL).

• This is called bootstrapping.

• How can this be possible and how was the first compiler compiled?
• Usual strategy:

. Find an existing compiler (could be an assembly language).

. Write a simple compiler for a fairly restricted subset of language.

. For example in PASCAL, does not allow ARRAY, RECORD,
POINTER.

. Call this a restricted language.

. Write in the restricted language a compiler, that handles advanced
features.

. Another example: C and C++.

Compiler notes #9, 20070530, Tsan-sheng Hsu 3



Developing environment

Developing environment:
• Use UNIX “make” to management a project.
• Use lexical analyzer (LEX) and compiler-compiler (YACC) to simplify

your task.
• Use “profile” to determine the bottleneck of implementation.

Testing and maintenance:
• Must generate correct code.
• Regression tests:

. Maintain a series of tests of which must be passed after.

. Re-pass the suite of tests once a revision is done to the compiler.

• Documentation.

A crucial element in being able to maintain a compiler is good
programming style and documentation.

Compiler notes #9, 20070530, Tsan-sheng Hsu 4


