Theory of Computer Games

電腦對局理論

Tsan-sheng Hsu

徐讚昇

tshsu@iis.sinica.edu.tw

http://www.iis.sinica.edu.tw/~tshsu
Goal

- **Course name:** Theory of Computer Games

 電腦對局理論

- **Prerequisite:** A.I.

- **Goal:** This course introduces techniques for computers to play various games which include Chinese chess and Go.

- **Disclaimers:**
 - NOT yet a course on game theory.
 - NOT yet a course on video games.
 - NOT yet a course on war game simulations.

- **Web page:**
 http://www.iis.sinica.edu.tw/~tshsu/tcg2010
About this class

- **Time and Place:** Every Thursday from 2:20pm to 5:20pm at Room 105 (CSIE building).

 Sep 16 23 30
 Oct 7 14 21 28
 Nov 4 11 18 25
 Dec 2 9 16 23 31
 Jan 6 13 20

- **Dates:**

- **Format:**
 - Lecturing: for the first 12 – 14 lectures.
 - Presentations for homework projects.
 - Occasional invited lectures.

 - Go
 - Connect6
 - ...

 - Student presentation: the last few lectures.

- **Class materials**
 - Class notes.
 - Collection of papers.
Evaluation

- **One programming homework project (15%)**
 - About single agent search.
 - Pick your own game, implement, and then present the result.

- **Written exam (25%)**

- **Presentation of a research paper (20%)**
 - Discussion before presentation.
 - 30-minute talk.
 - ≤ 30 slides in PDF format.
 - 10–15 minutes of Q & A.
 - Each student asks ≥ 1 non-trivial question.
 - Submit your revised set of slides one week later.

- **Final project (30%)**
 - A computer game program for Chinese Dark Chess.
 - The 4th NTU-TCG Cup.
 - Submitted package: Code + documents. semester.

- **Class participation (10%)**
Lecturing format

- For each topic
 - The first and most influential papers are introduced.
 - A list of recent and latest papers is provided for further readings and/or topics for presentations.
Topics

- Introduction and an AI oriented overview
- Single-player games
- Two-player perfect information games
- Other games
- Practical considerations
 - Memorizing knowledge
 - Transposition tables
 - Endgame databases
 - The graph-history interaction (GHI) problem
 - Hardware enhancements
 - Timing control
 - Opponent model
Introduction and an AI oriented overview

- Relations between computer games and Artificial Intelligence.
 - Why we study computer games?
 - Why we play or study games?

- History [SvdH02] [Sha50]
 - The Turk, a chess playing “machine” at 1780’s
 - The endgame playing machine at 1910’s
 - C. E. Shannon (1950) and A. Samuel (1960)

- Games that machines have beaten human champions [SvdH02] [Sch00]
 - Chess
 - Othello
 - Checker
 - ...
Single-player games

- Games that can be played by one person
 - combinatorial games such as 15-puzzle or Sukudo
 - other solitaire

- Classical approaches [Kor85] [KF02] [CS98]
 - Brute-force, BFS, DFS
 - Bi-directional search
 - A*
 - IDA*
 - IDA* with databases
Two-player perfect information games I

- A survey of current status [vdHUvR02]

Classical approaches
 - Alpha-beta search and its analysis [KM75]
 - Scout and Negascout [Rei83] [Fis83] [Pea80]

Enhancements to the classical approaches
 - Quiescence search [Bea90]
 - Move ordering and other techniques [Sch89] [AN77] [Hsu91]
 - Further pruning [SP96]
 - Proof-number search [AvdMvdH94]

Parallel alpha-beta based game tree search [Bro96] [FMM94] [HM02] [HSN89] [Hya97] [Man01]
Two-player perfect information games II

- Monte-Carlo game tree search
 - Basic ideas [Bru93]
 - Prunning techniques [BH04] [YYK+06]
 - Parallel Monte-Carlo game tree search [CJ08] [CWvdH08]

- Case study: Computer Chinese chess
Other games

- **Games with imperfect information and stochastic behaviors** [FBM98]
 - Backgammon
 - Bridge
- **Multi-player games** [Stu06]
 - Poker
 - Majon
Practical considerations I

- Transposition tables
 - Recording prior-search results to avoid researching
 - Design of a good hash function
 ▶ Zobrist’s hash function [Zob70]

- Open-game [Hya99] [Bur99] and endgame databases [Tho86] [Tho96] [WLH06]
 - Off-line collecting of knowledge
 - Computation done in advance

- The graph-history interaction (GHI) problem [Cam85] [BvdHU98]
 - The value of a position depends on the path leading to it.
Practical considerations II

- Hardware enhancements [DL04]
- Timing and resource usage control [Hyg84] [HGN85] [MS93]
 - Using time wisely
 - Use too little time in the opening may be fatal
 - Use too much time in opening may be fatal, too

- Opponent model [CM96]
 - How to take advantage of knowing the playing style of your opponent.
Resources I

- ICGA web site
 - http://ticc.uvt.nl/icga/
 - International Computer Games Association
 - Formally as ICCA (International Computer Chess Association)
 - Host of Computer Olympiad

- Proceedings of AAAI
 - Since 1980

- Proceedings of IJCAI
 - International Joint Conference on Artificial Intelligence
 - Since 1969, every odd numbered of year

- Proceedings of the CG conference
 - Computers and Games International Conference
 - Since 1998, every even numbered of year

- Proceedings of the ACG conference
 - Advances in Computer Games International Conference
 - Every odd numbered of year
 - 2005 at Taipei (11th)
Resources II

- **ICGA journal**
 - Quarterly publication since 1977

- **The A.I. magazine**
 - Journal for AAAI
 - Since 1980

- **Artificial Intelligence**
 - Flagship journal
 - Since 1970

- **IEEE transactions on Computational Intelligence and AI in Games**
 - A new IEEE journal
 - Quarterly publication since 2009
References

[BH04] B. Bouzy and B. Helmstetter. Monte-Carlo Go developments. In H. Jaap van den Herik, Hiroyuki Iida, and Ernst A. Heinz, editors, Advances in Computer Games, Many Games, Many Challenges, 10th

[EM09] Markus Enzenberger and Martin Müller. A lock-free multi-

