Theory of Computer Games: Selected Advanced Topics

Tsan-sheng Hsu

http://www.iis.sinica.edu.tw/~tshsu
Abstract

- Some advanced research issues.
 - The graph history interaction (GHI) problem.
 - Opponent models.
 - Searching chance nodes.
 - Proof-number search.
Graph history interaction problem

- The graph history interaction (GHI) problem [Campbell 1985]:
 - In a game graph, a position can be visited by more than one path from a starting position.
 - The value of the position depends on the path visiting it.
 - It can be win, loss or draw for Chinese chess.
 - It can only be draw for Western chess and Chinese dark chess.
 - It can only be loss for Go.

- In the transposition table, you record the value of a position, but not the path leading to it.
 - Values computed from rules on repetition cannot be used later on.
 - It takes a huge amount of storage to store all the paths visiting it.

- This is a very difficult problem to be solved in real time [Wu et al '05].
GHI problem – example

• Assume the one causes loops loses the game.
GHI problem – example

- Assume the one causes loops loses the game.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is loss because of rules of repetition.
 - Memorized J as a loss position.
GHI problem – example

- Assume the one causes loops loses the game.
- $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is loss because of rules of repetition. ▶ Memorized J as a loss position.
- $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.
GHI problem – example

• Assume the one causes loops loses the game.

• $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is loss because of rules of repetition.
 ▷ Memorized J as a loss position.

• $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.

• $A \rightarrow B \rightarrow E$ is a loss. Hence B is loss.
GHI problem – example

• Assume the one causes loops loses the game.
• $A \rightarrow B \rightarrow D \rightarrow G \rightarrow I \rightarrow J \rightarrow D$ is loss because of rules of repetition.
 ▷ Memorized J as a loss position.
• $A \rightarrow B \rightarrow D \rightarrow H$ is a win. Hence D is win.
• $A \rightarrow B \rightarrow E$ is a loss. Hence B is loss.
• $A \rightarrow C \rightarrow F \rightarrow J$ is loss because J is recorded as loss.
• A is loss because both branches lead to loss.
GHI problem – example

• Assume the one causes loops loses the game.
• $A \to B \to D \to G \to I \to J \to D$ is loss because of rules of repetition. ▷ Memorized J as a loss position.

• $A \to B \to D \to H$ is a win. Hence D is win.
• $A \to B \to E$ is a loss. Hence B is loss.
• $A \to C \to F \to J$ is loss because J is recorded as loss.
• A is loss because both branches lead to loss.
• However, $A \to C \to F \to J \to D \to H$ is a win.
Comments

- Using DFS to search the above game graph from left first or from right first produces two different results.
- Position A is actually a win position.
 - Problem: memorize J is a loss is only valid when the path leading to it causes a loop.
- Storing the path leading to a position in a transposition table requires too much memory.
- It is still a research problem to use a more efficient data structure.
Opponent models

- In a normal alpha-beta search, it is assumed that you and the opponent use the same strategy.
 - What is good to you is bad to the opponent and vice versa!
 - Hence we can reduce a minimax search to a NegaMax search.
 - This is normally true when the game ends, but may not be true in the middle of the game.

- What will happen when there are two strategies or evaluating functions f_1 and f_2 so that
 - for some positions p, $f_1(p)$ is better than $f_2(p)$
 - “better” means closer to the real value $f(p)$
 - for some positions q, $f_2(q)$ is better than $f_1(q)$

- If you are using f_1 and you know your opponent is using f_2, what can be done to take advantage of this information.
 - This is called OM (opponent model) search [Carmel and Markovitch 1996].
 - In a MAX node, use f_1.
 - In a MIN node, use f_2.
Opponent models – comments

- **Comments:**
 - Need to know your opponent’s model precisely or to have some knowledge about your opponent.
 - How to learn the opponent model on-line or off-line?
 - When there are more than 2 possible opponent strategies, use a probability model (PrOM search) to form a strategy.
Search with chance nodes

- **Chinese dark chess**
 - Two player, zero sum, **complete information**
 - **Perfect information**
 - **Stochastic**
 - There is a **chance** node during searching [Ballard 1983].
 - The value of a chance node is a distribution, not a fixed value.

- **Previous work**
 - Alpha-beta based [Ballard 1983]
 - Monte-Carlo based [Lancoto et al 2013]
Example (1/3)

- It's black turn and black has 6 different possible legal moves including 4 of them being moving its elephant and two flipping moves at a1 or a8.
 - It is difficult for black to secure a win by moving its elephant in all 3 possible directions or capturing the red pawn at left.
Example (2/3)

- If black flips a1, then it becomes one of the 2 following cases.
 - If a1 is black cannon, then it is difficult for red to win.
 - If a1 is black king, then it is difficult for black to lose.
- If black flips \(a8 \), then it becomes one of the 2 following cases.
 - If \(a8 \) is black cannon, then red cannon captures it immediately and results in a black lose.
 - If \(a8 \) is black king, then red cannon captures it immediately and results in a black lose.
Basic ideas for searching chance nodes

- Assume a chance node \(x \) has a score probability distribution function \(Pr(*) \) with the range of possible outcomes from 1 to \(N \) where \(N \) is a positive integer.
 - For each possible outcome \(i \), we need to compute \(\text{score}(i) \).
 - The expected value \(E = \sum_{i=1}^{N} \text{score}(i) \times Pr(x = i) \).
 - The minimum value is \(m = \min_{i=1}^{N} \{ \text{score}(i) \mid Pr(x = i) > 0 \} \).
 - The maximum value is \(M = \max_{i=1}^{N} \{ \text{score}(i) \mid Pr(x = i) > 0 \} \).

Example: open game in Chinese dark chess.
 - For the first ply, \(N = 14 \times 32 \).
 - Using symmetry, we can reduce it to 7*8.
 - We now consider the chance node of flipping the piece at the cell a1.
 - \(N = 14 \).
 - Assume \(x = 1 \) means a black King is revealed and \(x = 8 \) means a red King is revealed.
 - Then \(\text{score}(1) = \text{score}(8) \) since the first player owns the revealed king no matter its color is.
 - \(Pr(x = 1) = Pr(x = 8) = 1/14 \).
Bounds in a chance node

- Assume the various possibilities of a chance node is evaluated one by one in the order that at the end of phase i, the ith choice is evaluated.
 - Assume $v_{\text{min}} \leq \text{score}(i) \leq v_{\text{max}}$.

- What are the lower and upper bounds, namely m_i and M_i, of the expected value of the chance node immediately after the end of phase i?
 - $i = 0$.
 - $m_0 = v_{\text{min}}$
 - $M_0 = v_{\text{max}}$
 - $i = 1$, we first compute $\text{score}(1)$, and then know
 - $m_1 \geq \text{score}(1) \cdot \Pr(x = 1) + v_{\text{min}} \cdot (1 - \Pr(x = 1))$, and
 - $M_1 \leq \text{score}(1) \cdot \Pr(x = 1) + v_{\text{max}} \cdot (1 - \Pr(x = 1))$.
 - \ldots
 - $i = i^*$, we have computed $\text{score}(1), \ldots, \text{score}(i^*)$, and then know
 - $m_{i^*} \geq \sum_{i=1}^{i^*} \text{score}(i) \cdot \Pr(x = i) + v_{\text{min}} \cdot (1 - \sum_{i=1}^{i^*} \Pr(x = i))$, and
 - $M_{i^*} \leq \sum_{i=1}^{i^*} \text{score}(i) \cdot \Pr(x = i) + v_{\text{max}} \cdot (1 - \sum_{i=1}^{i^*} \Pr(x = i))$.
Changes of bounds: uniform case (1/2)

- Assume the search window entering a chance node with $N = c$ choices is $[\alpha, \beta]$.
 - For simplicity, let’s assume $Pr_i = \frac{1}{c}$, for all i, and the evaluated value of the ith choice is v_i.

- The value of a chance node after the first i choices are explored can be expressed as
 - an expected value $E_i = \frac{\text{vsum}_i}{i}$;
 - $\text{vsum}_i = \sum_{j=1}^{i} v_j$
 - This value is returned only when all choices are explored.
 \Rightarrow The expected value of an un-explored child shouldn’t be $\frac{v_{\min} + v_{\max}}{2}$.
 - a range of possible values $[m_i, M_i]$.
 - $m_i = \frac{\sum_{j=1}^{i} v_j + v_{\min} \cdot (c - i)}{c}$
 - $M_i = \frac{\sum_{j=1}^{i} v_j + v_{\max} \cdot (c - i)}{c}$

- Invariants:
 - $E_i \in [m_i, M_i]$
 - $E_N = m_N = M_N$
Changes of bounds: uniform case (2/2)

- Let m_i and M_i be the current lower and upper bounds, respectively, of the expected value of this chance node immediately after the evaluation of the ith node.

 \[m_i = \left(\sum_{j=1}^{i-1} v_j + v_i + v_{\min} \cdot (c - i) \right) / c \]

 \[M_i = \left(\sum_{j=1}^{i-1} v_j + v_i + v_{\max} \cdot (c - i) \right) / c \]

- How to incrementally update m_i and M_i:

 \[m_0 = v_{\min} \]

 \[M_0 = v_{\max} \]

 \[m_i = m_{i-1} + (v_i - v_{\min}) / c \]

 \[M_i = M_{i-1} + (v_i - v_{\max}) / c \]

- The current search window is $[\alpha, \beta]$.

 - No more searching is needed when

 \[m_i \geq \beta, \text{ chance node cut off I}; \]

 \Rightarrow The lower bound found so far is good enough.

 \Rightarrow Similar to a beta cutoff.

 \Rightarrow The returned value is m_i.

 \[M_i \leq \alpha, \text{ chance node cut off II}. \]

 \Rightarrow The upper bound found so far is bad enough.

 \Rightarrow Similar to an alpha cutoff.

 \Rightarrow The returned value is M_i.
Chance node cut off

- **When** $m_i \geq beta$, **chance node cut off I**,
 - which means \((\sum_{j=1}^{i-1} v_j + v_i + v_{min} \cdot (c - i))/c \geq beta\)
 - \(\Rightarrow v_i \geq B_{i-1} = c \cdot beta - (\sum_{j=1}^{i-1} v_j - v_{min} \cdot (c - i))\)

- **When** $M_i \leq alpha$, **chance node cut off II**,
 - which means \((\sum_{j=1}^{i-1} v_j + v_i + v_{max} \cdot (c - i))/c \leq alpha\)
 - \(\Rightarrow v_i \leq A_{i-1} = c \cdot alpha - (\sum_{j=1}^{i-1} v_j - v_{max} \cdot (c - i))\)

- Hence set the window for searching the ith choice to be $[A_{i-1}, B_{i-1}]$ which means no further search is needed if the result is not within this window.

- **How to incrementally update** A_i and B_i?
 - $A_0 = c \cdot (alpha - v_{max}) + v_{max}$
 - $B_0 = c \cdot (beta - v_{min}) + v_{min}$
 - $A_i = A_{i-1} + v_{max} - v_i$
 - $B_i = B_{i-1} + v_{min} - v_i$
Algorithm: Chance_Search

- Algorithm $F3.1'(\text{position } p, \text{ value } \alpha, \text{ value } \beta)$

 // max node
 - determine the successor positions p_1, \ldots, p_b
 - if $b = 0$, then return $f(p)$
 - else begin
 - $m := -\infty$
 - for $i := 1$ to b do
 - begin
 - if p_i is to play a chance node n
 then $t := Star1_F3.1'(p_i, n, \max\{\alpha, m\}, b)$
 - else $t := G3.1'(p_i, \max\{\alpha, m\}, \beta)$
 - if $t > m$ then $m := t$
 - if $m \geq \beta$ then return(m) // beta cut off
 - end
 - end
 - end;
 - return m
Algorithm: Chance_Search

Algorithm Star1_F3.1′(position p, node n, value alpha, value beta)

- // a chance node n with equal probability choices \(k_1, \ldots, k_c \)
- determine the possible values of the chance node n to be \(k_1, \ldots, k_c \)
- \(A_0 = c \cdot (alpha - v_{max}) + v_{max}, \quad B_0 = c \cdot (beta - v_{min}) + v_{min}; \)
- \(m_0 = v_{min}, \quad M_0 = v_{max} \) // current lower and upper bounds
- \(vsum = 0; \) // current sum of expected values
- for \(i = 1 \) to \(c \) do
 begin
 ▶ let \(p_i \) be the position of assigning \(k_i \) to n in p;
 ▶ \(t := G3.1'(p_i,\max\{A_{i-1},v_{min}\},\min\{B_{i-1},v_{max}\}) \)
 ▶ \(m_i = m_{i-1} + (t - v_{min})/c, \quad M_i = M_{i-1} + (t - v_{max})/c; \)
 ▶ if \(t \geq B_{i-1} \) then return \(m_i; \) // failed high, chance node cut off I
 ▶ if \(t \leq A_{i-1} \) then return \(M_i; \) // failed low, chance node cut off II
 ▶ \(vsum += t; \)
 ▶ \(A_i = A_{i-1} + v_{max} - t, \quad B_i = B_{i-1} + v_{min} - t; \)
 end
- return \(vsum/c; \)
Example: Chinese dark chess

- **Assumption:**
 - The range of the scores of Chinese dark chess is $[-10, 10]$ inclusive, $alpha = -10 \text{ and } beta = 10$.
 - $N = 7$.
 - $Pr(x = i) = 1/N = 1/7$.

- **Calculation:**
 - $i = 0$,
 - $m_0 = -10$.
 - $M_0 = 10$.
 - $i = 1 \text{ and if } score(1) = -2$, then
 - $m_1 = -2 * 1/7 + -10 * 6/7 = -62/7 \approx -8.86$.
 - $M_1 = -2 * 1/7 + 10 * 6/7 = 58/7 \approx 8.26$.
 - $i = 1 \text{ and if } score(1) = 3$, then
 - $m_1 = 3 * 1/7 + -10 * 6/7 = -57/7 \approx -8.14$.
 - $M_1 = 3 * 1/7 + 10 * 6/7 = 63/7 = 9$.
General case

- Assume the ith choice happens with a chance w_i/c where $c = \sum_{i=1}^{N} w_i$ and N is the total number of choices.

 - $m_0 = v_{\text{min}}$
 - $M_0 = v_{\text{max}}$

 - $m_i = (\sum_{j=1}^{i-1} w_j \cdot v_j + w_i \cdot v_i + v_{\text{min}} \cdot (c - \sum_{j=1}^{i} w_j))/c$
 - $m_i = m_{i-1} + (w_i/c) \cdot (v_i - v_{\text{min}})$

 - $M_i = (\sum_{j=1}^{i-1} w_j \cdot v_j + w_i \cdot v_i + v_{\text{max}} \cdot (c - \sum_{j=1}^{i} w_j))/c$
 - $M_i = M_{i-1} + (w_i/c) \cdot (v_i - v_{\text{max}})$

 - $A_0 = (c/w_1) \cdot (\alpha - v_{\text{max}}) + v_{\text{max}}$
 - $B_0 = (c/w_1) \cdot (\beta - v_{\text{min}}) + v_{\text{min}}$

 - $A_{i-1} = (c \cdot \alpha - (\sum_{j=1}^{i-1} w_j \cdot v_j - v_{\text{max}} \cdot (c - \sum_{j=1}^{i} w_j))/w_i$
 - $A_i = (w_i/w_{i+1}) \cdot (A_{i-1} - v_i) + v_{\text{max}}$

 - $B_{i-1} = (c \cdot \beta - (\sum_{j=1}^{i-1} w_j \cdot v_j - v_{\text{min}} \cdot (c - \sum_{j=1}^{i} w_j))/w_i$
 - $B_i = (w_i/w_{i+1}) \cdot (B_{i-1} - v_i) + v_{\text{min}}$
Comments

- We illustrate the ideas using a fail soft version of the alpha-beta algorithm.
 - Original and fail hard version have a simpler logic in maintaining the search interval.
 - The semantic of comparing an exact returning value with an expected returning value is something that needs careful thinking.
 - May want to pick a chance node with a lower expected value but having a hope of winning, not one with a slightly higher expected value but having no hope of winning when you are in disadvantageous.
 - May want to pick a chance node with a lower expected value but having no chance of losing, not one with a slightly higher expected value but having a chance of losing when you are in advantage.

- Need to revise algorithms carefully when dealing with the original, fail hard or NegaScout version.
 - What does it mean to combine bounds from a fail hard version?

- Exist other improvements by considering better move orderings involving chance nodes.
How to use these bounds

- The lower and upper bounds of the expected score can be used to do alpha-beta pruning.
 - Nicely fit into the alpha-beta search algorithm.

- Can do better by not searching the DFS order.
 - It is not necessary to search completely the subtree of \(x = 1 \) first, and then start to look at the subtree of \(x = 2 \).
 - Assume it is a MAX chance node, e.g., the opponent takes a flip.
 - Knowing some value \(v'_1 \) of a subtree for \(x = 1 \) gives an upper bound, i.e., \(\text{score}(1) \geq v'_1 \).
 - Knowing some value \(v'_2 \) of a subtree for \(x = 2 \) gives another upper bound, i.e., \(\text{score}(2) \geq v'_2 \).
 - These bounds can be used to make the search window further narrower.

- For Monte-Carlo based algorithm, we need to use a sparse sampling algorithm to efficiently estimate the expected value of a chance node [Kearn et al 2002].
Proof number search

- Consider the case of a 2-player game tree with either 0 or 1 on the leaves.
 - win, or not win which is lose or draw;
 - lose, or not lose which is win or draw;
 - Call this a binary valued game tree.

- If the game tree is known as well as the values of some leaves are known, can you make use of this information to search this game tree faster?
 - The value of the root is either 0 or 1.
 - If a branch of the root returns 1, then we know for sure the value of the root is 1.
 - The value of the root is 0 only when all branches of the root returns 0.
 - An AND-OR game tree search.
Which node to search next?

- A **most proving node** for a node u: a descendent node if its value is 1, then the value of u is 1.
- A **most disproving node** for a node u: a descendent node if its value is 0, then the value of u is 0.
Proof or Disproof Number

- Assign a **proof number** and a **disproof number** to each node u in a binary valued game tree.
 - $\text{proof}(u)$: the minimum number of leaves needed to visited in order for the value of u to be 1.
 - $\text{disproof}(u)$: the minimum number of leaves needed to visited in order for the value of u to be 0.
- The definition implies a bottom-up ordering.
Proof Number: Definition

- \(u \) is a leaf:
 - If \(\text{value}(u) \) is unknown, then \(\text{proof}(u) \) is the cost of evaluating \(u \).
 - If \(\text{value}(u) \) is 1, then \(\text{proof}(u) = 0 \).
 - If \(\text{value}(u) \) is 0, then \(\text{proof}(u) = \infty \).

- \(u \) is an internal node with all of the children \(u_1, \ldots, u_b \):
 - if \(u \) is a MAX node,
 \[
 \text{proof}(u) = \min_{i=1}^{i=b} \text{proof}(u_i);
 \]
 - if \(u \) is a MIN node,
 \[
 \text{proof}(u) = \sum_{i=1}^{i=b} \text{proof}(u_i).
 \]
Disproof Number: Definition

- **u is a leaf:**
 - If value\((u) \) is unknown, then disproof\((u) \) is cost of evaluating \(u \).
 - If value\((u) \) is 1, then disproof\((u) = \infty \).
 - If value\((u) \) is 0, then disproof\((u) = 0 \).

- **u is an internal node with all of the children \(u_1, \ldots, u_b \):**
 - if \(u \) is a MAX node,
 \[
 \text{disproof}(u) = \sum_{i=1}^{i=b} \text{disproof}(u_i);
 \]
 - if \(u \) is a MIN node,
 \[
 \text{disproof}(u) = \min_{i=1}^{i=b} \text{disproof}(u_i).\]
Illustrations

proof number, disproof number

proof number, disproof number
How to use these numbers

- If the numbers are known in advance, then from the root, we search a child u with the value equals to $\min\{\text{proof}(\text{root}), \text{disproof}(\text{root})\}$.
 - Find a path from the root towards a leaf recursively as follows.
 - If we try to prove it, then pick a child with the least proof number for a MAX node, and pick any node that has a chance to be proved for a MIN node.
 - If we try to disprove it, then pick a child with the least disproof number for a MIN node, and pick any node that has a chance to be disproved for a MAX node.

- Assume each leaf takes a lot of time to evaluate.
 - For example, the game tree represents an open game tree or an endgame tree.
 - Depends on the results we have so far, pick the next leaf to prove or disprove.

- Need to be able to update these numbers on the fly.
PN-search: algorithm

- **loop:** Compute or update proof and disproof numbers for each node in a bottom up fashion.
 - If $\text{proof}(\text{root}) = 0$ or $\text{disproof}(\text{root}) = 0$, then we are done, otherwise
 - $\text{proof}(\text{root}) \leq \text{disproof}(\text{root})$: we try to prove it.
 - $\text{proof}(\text{root}) > \text{disproof}(\text{root})$: we try to disprove it.

- $u \leftarrow \text{root}; \{ \ast \text{ find the leaf to prove or disprove } \ast \} \$
 - if we try to prove, then
 - while u is not a leaf do
 - if u is a MAX node, then
 - $u \leftarrow$ leftmost child of u with the smallest non-zero proof number;
 - if current is a MIN node, then
 - $u \leftarrow$ leftmost child of u with a non-zero proof number;

 - if we try to disprove, then
 - while u is not a leaf do
 - if u is a MAX node, then
 - $u \leftarrow$ leftmost child of u with a non-zero disproof number;
 - if current is a MIN node, then
 - $u \leftarrow$ leftmost child of u with the smallest non-zero disproof number;

- Prove or disprove u; go to loop;
Multi-Valued game Tree

- The values of the leaves may not be binary.
 - Assume the values are non-negative integers.
 - Note: it can be in any finite countable domain.

- Revision of the proof and disproof numbers.
 - $\text{proof}_v(u)$: the minimum number of leaves needed to visited in order for the value of u to $\geq v$.
 - $\triangleright \text{proof}(u) \equiv \text{proof}_1(u)$.
 - $\text{disproof}_v(u)$: the minimum number of leaves needed to visited in order for the value of u to $< v$.
 - $\triangleright \text{disproof}(u) \equiv \text{disproof}_1(u)$.
Illustration

```
  a
 /\  
 b  c
 / \
 d  e  f  g  h
```

18 ? ? 10 ?
Illustration

\[
\begin{align*}
 &a \\
 &\quad b \\
 &\quad\quad d \quad e \\
 &\quad\quad v \leq 18? \quad \quad \quad \quad v \leq 18? \\
 &\quad\quad 18 \quad ? \\
 &\quad\quad g \quad h \\
 &\quad\quad 10 \quad ?
\end{align*}
\]
Multi-Valued proof number

- **u is a leaf:**
 - If $\text{value}(u)$ is unknown, then $\text{proof}_v(u)$ is cost of evaluating u.
 - If $\text{value}(u) \geq v$, then $\text{proof}_v(u) = 0$.
 - If $\text{value}(u) < v$, then $\text{proof}_v(u) = \infty$.

- **u is an internal node with all of the children u_1, \ldots, u_b:**
 - if u is a MAX node,
 \[
 \text{proof}_v(u) = \min_{i=1}^{i=b} \text{proof}_v(u_i);
 \]
 - if u is a MIN node,
 \[
 \text{proof}_v(u) = \sum_{i=1}^{i=b} \text{proof}_v(u_i).
 \]
Multi-Valued disproof number

- **u is a leaf:**
 - If value(u) is unknown, then disproof\(_v(u)\) is cost of evaluating u.
 - If value(u) \(\geq v\), then disproof\(_v(u) = \infty\).
 - If value(u) < v, then disproof\(_v(u) = 0\).

- **u is an internal node with all of the children \(u_1, \ldots, u_b\):**
 - if u is a MAX node,
 \[
 \text{disproof}_v(u) = \sum_{i=1}^{i=b} \text{disproof}_v(u_i);
 \]
 - if u is a MIN node,
 \[
 \text{disproof}_v(u) = \min_{i=1}^{i=b} \text{disproof}_v(u_i).
 \]
Revised PN-search(v): algorithm

- **loop**: Compute or update proof_v and disproof_v numbers for each node in a bottom up fashion.
 - If $\text{proof}_v(\text{root}) = 0$ or $\text{disproof}_v(\text{root}) = 0$, then we are done, otherwise
 - $\text{proof}_v(\text{root}) \leq \text{disproof}_v(\text{root})$: we try to prove it.
 - $\text{proof}_v(\text{root}) > \text{disproof}_v(\text{root})$: we try to disprove it.

- $u \leftarrow \text{root}; \{ \ast \text{ find the leaf to prove or disprove } \ast \} $
 - if we try to prove, then
 - while u is not a leaf do
 - if u is a MAX node, then
 - $u \leftarrow$ leftmost child of u with the smallest non-zero proof_v number;
 - if current is a MIN node, then
 - $u \leftarrow$ leftmost child of u with a non-zero proof_v number;

 - if we try to disprove, then
 - while u is not a leaf do
 - if u is a MAX node, then
 - $u \leftarrow$ leftmost child of u with a non-zero disproof_v number;
 - if current is a MIN node, then
 - $u \leftarrow$ leftmost child of u with the smallest non-zero disproof_v number;

- Prove or disprove u; go to loop;
Multi-valued PN-search: algorithm

When the values of the leaves are not binary, use an open value binary search to find an upper bound of the value.

- Set the initial value of v to be 1.
- loop: PN-search(v)
 - Prove the value of the search tree is $\geq v$ or disprove it by showing it is $< v$.

- If it is proved, then double the value of v and go to loop again.
- If it is disproved, then the true value of the tree is between $\lfloor v/2 \rfloor$ and $v - 1$.
- {* Use a binary search to find the exact returned value of the tree. *}
- low $\leftarrow \lfloor v/2 \rfloor$; high $\leftarrow v - 1$;
- while low \leq high do
 - if low = high, then return low as the tree value
 - mid $\leftarrow \lfloor (\text{low} + \text{high})/2 \rfloor$
 - PN-search(mid)
 - if it is disproved, then high \leftarrow mid $-$ 1
 - else if it is proved, then low \leftarrow mid
Comments

- Can be used to construct opening books.
- Appear to be good for searching certain types of game trees.
 - Find the easiest way to prove or disprove a conjecture.
 - A dynamic strategy depends on work has been done so far.
- Performance has nothing to do with move ordering.
 - Performances of most previous algorithms depend heavily on whether good move orderings can be found.
- Searching the “easiest” branch may not give you the best performance.
 - Performance depends on the value of each internal node.
- Commonly used in verifying conjectures, e.g., first-player win.
 - Partition the opening moves in a tree-like fashion.
 - Try to the “easiest” way to prove or disprove the given conjecture.
- Take into consideration the fact that some nodes may need more time to process than the other nodes.
References and further readings (1/2)

References and further readings (2/2)

- Bruce W. Ballard The *-minimax search procedure for trees containing chance nodes Artificial Intelligence, Volume 21, Issue 3, September 1983, Pages 327-350
- Kearns, Michael; Mansour, Yishay; Ng, Andrew Y. A sparse sampling algorithm for near-optimal planning in large Markov decision processes. Machine Learning, 2002, 49.2-3: 193-208.