Institute of Information Science, Academia Sinica




TIGP(SNHCC)--Machine Learning and Privacy

  • Prof. Pei-Yuan Wu (Dept. Electrical Engineering, National Taiwan University)
    Host: TIGP (SNHCC)
  • 2020-04-13 (Mon.) 14:00 – 16:00
  • Meeting Room ID: 570 539 375/ Password: WgJZ7HRzn48

Machine Learning (ML) as-a-service (MLaaS) has brought much convenience to our daily lives. Recent services provided by the IT industries are growing rapidly including: Microsoft Azure Machine Learning Studio, AWS Machine Learning and Google Cloud Machine Learning Engine. However, these MLaaS are offered through cloud computing services which raises the potential of privacy leakage when personal data were used in the model development.  How to preserve privacy as well as preventing abusive usage of sensitive personal data, while at the same time enjoy the convenience and knowledge brought by deep learning, becomes an important issue.


This talk aims to provide a broad overview over various security aspects in machine learning pipeline, including how security can be enhanced by applying machine learning to active authentication scheme, as well as security issues against attacks that use machine learning.  Threat models such as model inversion attacks, membership inference attack, adversarial example attack, as well as remedies including differential privacy, cryptographic approaches, compressive privacy, as well as randomized smoothing, will be introduced.



Pei-Yuan Wu is an assistant professor at National Taiwan University since 2017. He was born in Taipei, Taiwan, R.O.C., in 1987. He received the B.S.E. degree in electrical engineering from National Taiwan University in 2009, and the M.A. and Ph.D. degrees in electrical engineering from Princeton University in 2012 and 2015, respectively. He joined Taiwan Semiconductor Manufacturing Company from 2015 to 2017. He was a recipient of the Gordon Y.S. Wu Fellowship in 2010, Outstanding Teaching Assistant Award at Princeton University in 2012. His research interest lies in artificial intelligence, signal processing, estimation and prediction, and cyber-physical system modeling.