Previous [1] 2 [3] [4] [5] [6] [7] [8]

Journal of Inforamtion Science and Engineering, Vol.8 No.3, pp.343-351 (September 1992)
A Branch and Bound Decision Tree Bayes
Classifier for Robust Multi-font Printed
Chinese Character Recognition

Chorkin Chan and Pak-Kwong Wong
Department of Computer Science
University of Hong Kong

A generalized branch and bound decision tree classifier is proposed which approximates the function of a full-search strategy when the training sample is sufficiently large to reflect the true data distribution. The classifier is an m-ary decision tree with each node representing a set of disjoint pattern classes. Associated with each set is a subspace of the feature space and a function estimating the maximum likelihood of any given feature vector x found in the subspace belonging to a pattern class of the set. By comparing the best-so-far likelihood of x belonging to any of the pattern classes already visited with such an estimate, one can decide if the corresponding node is worth visiting. Keywords: branch and bound algorithm, decision tree classifier, recognition of large pattern set, recognition of printed chinese characters of multi-fonts

Received July 21, 1991; revised June 23, 1992.
Communicated by Jhing-Fa Wang.