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Conventional workload distribution schemes for software distributed shared mem-

ory (DSM) systems simply distribute the program threads in accordance with the CPU 
power of the individual processors or the data-sharing characteristics of the application. 
Although these schemes aim to minimize the program execution time by reducing the 
computation and communication costs, memory access costs also have a major influence 
on the overall program performance. If a processor has insufficient physical memory 
space to cache all of the data required by its local working threads, it must perform a se-
ries of page replacements if it is to complete its thread executions. Although these page 
replacements enable the threads to complete their tasks, thread execution is inevitably 
delayed by the latency of the page swapping operations. Consequently, the current study 
proposes a novel workload distribution scheme for DSM systems which considers not 
only the CPU power and data-sharing characteristics, but also the physical memory ca-
pabilities of the individual processors. The present results confirm the importance of 
considering memory resources when establishing an appropriate workload distribution 
for DSM systems and indicate that the proposed scheme is more effective than schemes 
which consider only CPU resources or memory resources, respectively. 
 
Keywords: workload distribution, distributed shared memory (DSM), memory resource, 
page replacement, data-sharing characteristic 
 
 

1. INTRODUCTION 
 

Obtaining a suitable workload distribution is essential if the performance of programs 
executed in parallel on clusters of computers is to be optimized. Most users generally 
partition their problems evenly into a number of threads and then distribute these threads 
equally onto each processor in an attempt to achieve a workload balance. However, the 
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processors clustered in computer networks are generally not identical in terms of their 
resource capabilities, e.g. CPU power, physical memory space, network bandwidth, etc. 
Consequently, some processors may possess insufficient resources to match the demands 
of their local threads, while others may have insufficient work to fully exploit their avail-
able resources. This not only delays the overall finish time of the program, but also re-
duces the return obtained from the original investment in the computational resources. 
Therefore, it is necessary to develop a more sophisticated scheme to distribute program 
workloads onto clustered computers in accordance with their specific resource capabili-
ties. 

Recently, software distributed shared memory (DSM) systems have been success-
fully applied for the parallel scheduling of program workloads onto clustered computers. 
These run time systems use software technology to construct a virtual shared memory 
abstract over the clustered computers. With this virtual shared memory abstract, users 
can employ shared variables rather than message passing to develop their applications. 
This greatly reduces the complexity of programming applications designed for execution 
on clustered computers. However, DSM systems suffer the same workload distribution 
problems as those described in the paragraph above. Although, some DSM systems em-
ploy dynamic workload distribution schemes to optimize the performance of user appli-
cations [1-4], these schemes consider only the CPU power and the data sharing charac-
teristics of the application when distributing the program threads onto the clustered proc-
essors. 

Besides computation and communication costs, memory access costs also play a 
key role in determining the overall program performance. If a processor has insufficient 
physical memory space to cache all of the data demanded by its local threads, it will be 
required to perform page replacements at run-time whenever its local threads attempt to 
access data which is not located in its physical memory. Although virtual memory tech-
nology enables the processor to complete the tasks of its local threads, the memory swap-
ping routines inevitably postpone the thread execution. The rapid advances made in 
VLSI technology over the past decade have increased the relative influence of memory 
swapping delays on the program performance since the speed differential between the 
CPU and external storage devices is greater than that between the CPU and its physical 
memory. Therefore, workload distribution methods which take no account of memory 
resources are liable to make flawed decisions which degrade rather than enhance the per-
formance of DSM programs. 

In order to resolve this problem, this paper discusses the inclusion of memory re-
source considerations in the workload distribution planning of software DSM systems. In 
the first step of the present research, the memory resources of the processors are taken 
into account in deriving a set of formulae with which to predict the execution time of 
each processor for a specific thread-mapping pattern when executing users’ DSM pro-
grams. These formulae provide the means to identify the thread-mapping pattern which 
improves the system performance by simultaneously considering the computational and 
memory resources of each processor and the data sharing characteristics of the DSM ap-
plication. Having identified the optimum thread-mapping pattern, the current thread- 
mapping pattern is adjusted at run-time in order to reduce the delay latencies between 
processors, hence improving the performance of the DSM application. In the second 
stage of the current study, the proposed workload distribution scheme is implemented on 
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a testbed known as Teamster [9] in order to examine its effect on the performance of 
various test applications. 

The remainder of this paper is organized as follows. Section 2 discusses previous 
studies of workload distribution on DSM systems. Section 3 analyzes the impact of 
memory resource considerations on the performance of DSM applications and develops 
analytical formulae to establish the iteration finish times of the executing processors un-
der different thread mapping patterns. Section 4 discusses the architecture of the pro-
posed workload distribution scheme on Teamster. Section 5 presents the results of a se-
ries of experiments designed to investigate the effect of considering memory resources 
on the application performance when planning the workload distribution of DSM sys-
tems. Finally, section 6 draws some brief conclusions and highlights the areas of in-
tended future research. 

2. RELATED WORKS 

Current DSM systems capable of supporting workload balancing via dynamic work-
load redistribution include CVM [5], JIAJIA [6] and Cohesion [7]. CVM focuses on 
obtaining the workload balance which minimizes the communication costs incurred 
when maintaining data consistency. CVM achieves this by distributing the program 
threads onto processors in accordance with the computational powers of the individual 
processors and the computational demands of the working threads. Furthermore, CVM 
co-locates pairs of threads having the highest degree of mutual data sharing on the same 
node in order to minimize inter-node communication costs. JIAJIA assumes that each 
processor has sufficient physical memory space to hold the data required by the threads 
assigned to it. Adopting a similar approach to that taken by CVM, JIAJIA distributes the 
program workload based on the computational powers of the individual processors. The 
third system, Cohesion, divides the program workload distribution task into two phases, 
namely the migration phase and the exchange phase. In the migration phase, Cohesion 
estimates the appropriate workload for each processor using the same approach as that 
employed by CVM and then migrates threads from the heavily loaded nodes to the more 
lightly loaded nodes in order to minimize load imbalance costs. Meanwhile, in the ex-
change phase, pairs of threads with the highest degree of mutual data sharing are 
co-located on the same node in order to reduce the communication costs incurred by 
thread exchanges. 

The three systems described above all neglect the memory resources of the individ-
ual processors in the computer cluster when distributing the application workload. Some 
researchers [12] have considered both processor and memory factors when developing 
the workload distribution policy for applications designed for execution on distributed 
systems. In the proposed study, the system adopts a CPU-memory-based allocation pol-
icy if the memory resources are insufficient. To optimize the application performance, 
the proposed policy allocates jobs to a node only if it has sufficient memory resources to 
process the task. However, this approach is not suitable for DSM systems. In the parallel 
computation of a DSM application, the main task is generally partitioned into several 
subtasks and dispatched to a number of different nodes. The DSM system then collects 
the execution results of the individual subtasks to obtain the result of the main task. Ac-
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cordingly, the extent of the parallelism between each subtask is significant interest when 
developing workload distribution schemes for software DSM systems. 

3. FORMULA ANALYSIS 

DSM applications can be categorized into three broad groups, namely fork-join, 
run-to-complete and iterative [8]. Since each group has different execution characteris-
tics, it is necessary to design specific workload distribution schemes for each one. The 
current workload distribution investigation focuses on iterative DSM applications. Com-
pared to fork-join and run-to-complete applications, iterative applications more readily 
provide the information required to derive precise estimates of the program execution 
time for different thread-mapping patterns. Furthermore, iterative applications provide a 
clearer view of the impact of different workload distributions on the program perform-
ance. 

In software DSM systems, an iterative program is generally partitioned into a num-
ber of threads, which are then distributed onto processors for parallel execution. When 
individual threads finish their jobs within the current iteration, they must join the other 
threads at a barrier before commencing the next iteration. Accordingly, the finish time of 
any iteration is determined by the longest finish time of any processor working within 
that iteration. Clearly, the total execution time of the iterative program is given by the 
sum of the finish times of the individual iterations created in that program. Therefore, to 
evaluate the effect of the workload distribution on the application performance, this study 
develops a formula to estimate the iteration finish time of a processor with a specific 
thread-mapping pattern. 

Basically, the iteration finish time of processor x, Tx, comprises three components, 
the computation time, the memory swapping time and the communication time, i.e. Tx = 

.x x x
comp mem commT T T+ +  

The computation time, ,x
compT  is the time spent by processor x executing the com-

putational work of its local threads. Let Sx be the set of all threads running on processor x 
and 

i
compt  be the computation time of thread i assigned to processor x. x

compT  is therefore  
given by .
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The communication time, ,x
commT  is the time spent by processor x propagating its 

data page updates to other processors holding the same page in order to maintain data  

consistency. According to Liang [11], x
commT  is given by 
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 if processor x and processor y share page k, and Cxyk = 0 other-  

wise. In this equation, N is the number of execution processors, P is the total number of 
data pages, Sizepacket is the network packet size, and tpacket is the average time spent trans-
ferring one message packet in the network. If processor x shares page k with processor y, 
processor x will send its updates for page k to processor y to maintain data consistency. 
The update of processor x for page k is actually the accumulation of its local threads’ 
updates for page k. Consequently, processor x will send the update of page k, i.e.,  
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Finally, the memory swapping time, ,x
memT  is the time spent by processor x per-

forming page replacements to cache the data accessed by its local threads. Let Mx repre-
sent the maximum memory space which processor x can afford for thread memory de-
mands. Furthermore, let mi be the memory space requested by thread i. In the case where 
a processor has sufficient memory space to cache all of the data accessed by its local 
threads, the latency of memory accesses can be neglected. However, if the processor has 
insufficient memory space, page faults will occur frequently during thread execution as 
virtual memory mechanisms are triggered to perform page replacements. The memory 
accesses of the threads will be delayed due to the latency of executing these page re-
placements. Consequently, the memory swapping time of processor x can be denoted as: 
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where 
i
memt  is the memory swapping latency of thread i assigned to processor x. 

The time required to execute a page replacement can be divided into two discrete 
components. The first component is the time spent scanning the physical memory to 
identify the least-recently used (LRU) data pages and then swapping these pages out to 
disk. The second component relates to the time spent swapping in the data pages required 
by the threads from disk to the physical memory. Therefore, the memory swapping la- 
tency of thread i assigned to processor x can be expressed as ( )i i x x

mem spi spot f t t= × + ,  
where f i is the number of page replacements executed by processor x in caching the data 
pages required by thread i, x

spot  is the average time spent by processor x searching for the 
LRU data pages and swapping one page out to the swapping device, and x

spit  is the av-
erage time spent swapping in one page on processor x. Therefore, x

memT  can be divided 
into two discrete components, i.e. the memory swapping-in time, ,x

spiT  and the memory 
swapping-out time, .x

spoT  
x

spiT  means the total time spent by the system swapping in 
pages for the DSM application on processor x. x

spoT  is the total time spent by the system 
searching for the LRU data pages on processor x and then swapping these pages out. 

In general, the number of swapping-out operations is equal to the number of swap-
ping-in operations, and the occurrence of these operations varies as a function of the 
memory deficiency. However, most UNIX-like operating systems use an individual page 
scanning [13] process to scan the entire physical memory space in order to identify the 
LRU pages which can be swapped out. The performance of this page scanner is directly 
proportional to the processor power. Additionally, the probability of identifying LRU 
pages for page replacement is directly related to the size of the available physical mem-
ory which the system can offer the DSM application. In other words, x

spoT  is inversely 
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proportional to the size of the available physical memory. Assuming that each processor 
in the DSM system has similar I/O hardware architectures, the memory swapping-in and 
swapping-out time equations can be simplified to: 

 
x

x i x x
spi spi lack
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x x
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where Cx indicates the power factor (i.e. speed) of processor x, x
lackM  denotes the volume 

of the physical memory deficiency at processor x while running the specific DSM appli-
cation, x

totalM  represents the total size of the physical memory at processor x, and x
freeM  

indicates the available physical memory for the DSM application at processor x. 
When implementing the proposed workload distribution scheme, the processor 

which provides the most comprehensive system information, particularly the memory 
swapping time, is specified as the reference processor. Run-time information collected 
from this processor is then used by the system to estimate the execution time of the DSM 
application for different thread-mapping patterns. The iteration finish time of processor x 
is expressed in the following final form: 

x

refx x x ref
freex i ref ref xlack lack total

comp spi spo commref ref ref x x
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where ref
spiT  is the total time spent by the system swapping in pages for the DSM applica-

tion on the reference processor, ref
spoT  is the total time spent by the system searching for 

the LRU data pages on the reference processor and then swapping these pages out, Cref is 
the power factor of the reference processor, ref

lackM  is the physical memory deficiency of 
the reference processor, ref

totalM  is the total size of the physical memory of the reference 
processor, and ref

freeM  is the physical memory available to the DSM application at the 
reference processor. 

4. PROPOSED WORKLOAD DISTRIBUTION SCHEME 

The proposed dynamic workload distribution scheme is designed to adjust the 
thread-mapping pattern at run-time such that the delay latencies between processors are 
minimized, hence improving the performance of the DSM application. As shown in Fig. 
1, the proposed workload distribution scheme comprises three phases, the information 
collection phase, the prediction phase, and the reconfiguration phase. During the first 
phase, run-time information is collected and maintained as an input to the trigger man-
ager and the prediction phase. The trigger manager is used to determine whether the 
DSM system is suffering from a workload imbalance. When prompted by the trigger 
manager, the prediction phase tries to generate a new thread-mapping pattern to improve 
the performance of the DSM application. The reconfiguration phase then redistributes the  
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Fig. 1. Flowchart of proposed workload distribution scheme. 

 
working threads in accordance with the new thread-mapping pattern identified by the 
prediction phase. The details of these three phases are discussed in the paragraphs below. 
 
4.1 Information Collection Phase 
 

The information required by the proposed workload distribution method can be clas-
sified as either static or dynamic. The former includes the CPU power, the total physical 
memory space, and the average time spent executing page replacements. This static in-
formation is collected only when the execution of the DSM application is initiated. The 
dynamic information includes the computation time of each working thread, the data 
access pattern of the working threads, and the residual memory space of each processor. 
This information is collected during the execution of the DSM application. 

Since the current testbed, Teamster, is built at the user level, it is easily modified to 
support the collection of the required dynamic information. Tools such as “SE” can be 
used to gather some system information, e.g. the residual physical memory space, from 
the procfs file systems, while the active correlation track mechanism [10] can be em-
ployed to collect the data access pattern of the working threads. The data access pattern 
is used to identify the working sets of threads and to determine the amount of memory 
required by these threads. It can also be used to estimate the communication time of each 
processor for a specific thread-mapping pattern. 

The data access pattern plays a particularly important role in the proposed workload 
distribution scheme. However, the overheads involved in identifying this data access 
pattern are relatively higher than those incurred in collecting the other system informa-
tion. Hence, the information collection phase shown in Fig. 1 is implemented as a two- 
subphase module comprising a basic information collection module and an advanced 
information collection module. Initially, the system operates in a normal mode and the 
basic information collection module acquires routine system information at run-time. 
However, when an obvious workload imbalance situation is identified, the advanced in-
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formation collection module is activated to collect more complex information such as the 
data access pattern. Using this two-stage approach, the proposed information collection 
phase achieves the goal of collecting the information required by the subsequent predic-
tion phase in an efficient and cost effective manner. 

4.2 Prediction Phase 

In Fig. 1, the prediction phase applies the formulae derived in section 3 to predict 
the thread-mapping pattern which will effectively improve the performance of the DSM 
application. However, using a full-search algorithm to identify the optimal thread-   
mapping pattern incurs excessive overheads. Therefore, this study makes the fundamen-
tal assumption that the behaviors of the iterative DSM applications considered in the 
present investigation are regular, i.e. the processor and memory resource demands of 
each thread are similar within the same application. On this basis, an efficient heuristic 
algorithm is developed to establish the optimum thread-mapping pattern.  

The prediction phase is divided into two sequential subphases. The objective of the 
first subphase is to predict the number of threads which should be assigned to each proc-
essor in order to achieve a workload balance, thereby minimizing the waiting latencies 
when executing the iterations of the DSM application. This study incorporates memory 
resource considerations into this subphase by performing the following steps: 

 
(1)  Identify the processor with the longest finish time and the processor with the shortest 

finish time and designate these processors as the source processor and the destination 
processor, respectively. Define the partial iteration time as the longest finish time 
between these two processors. 

(2)  Simulate the migration of one thread from the source processor to the destination 
processor. Use the final formula presented in section 3 to estimate the finish times of 
these two processors and determine the partial iteration time between them. Assess 
whether or not the estimated partial iteration time is reduced by the simulated migra-
tion. If this is the case, repeat step (2) until the partial iteration time between the two 
processors cannot be reduced any further. (Note that this iterative search procedure is 
illustrated in Fig. 2.) 

(3)  If the simulations in step (2) indicate that one or more threads should be migrated 
from the source processor to the destination processor, update the number of threads 
assigned to each processor, re-estimate their respective finish times, and then return 
to step (1). 

(4)  If step (2) does not identify any threads for migration, identify the processor which 
has the shortest finish time other than the previously designated destination proces-
sors which do not lead to any further thread migrations from the current source proc-
essor, specify this processor as the new destination processor, and repeat step (2). 

(5)  When no other processors exist to be specified as the new destination processor, i.e. 
the steps above have been performed using each of the processors other than the 
source processor as the destination processor, the task of predicting the number of 
threads to be assigned to each processor is complete. 
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Fig. 2. Search method for shortest partial iteration time. 

 
Having completed the simulation activities described in steps (1) to (4) above, the 

system produces a complete description of the predicted thread number pattern, ex-
pressed in terms of the number of threads to be assigned to each processor. The second 
prediction subphase uses the results of the first subphase and the data access pattern in-
formation provided by the information collection phase to predict the thread-mapping 
pattern which will minimize the data sharing costs between the executing processors. If 
the predicted thread-mapping pattern differs from the current thread-mapping pattern, the 
result is passed to the reconfiguration phase, which then executes the physical redistribu-
tion of the working threads, as described below.  

4.3 Reconfiguration Phase 

The reconfiguration phase is also divided into two sequential subphases. In the first 
subphase, referred to as the migration subphase, the system utilizes a thread migration 
mechanism to adjust the distribution of the working threads according to the results of 
the preceding prediction phase. Having completed the migration subphase, the DSM ap-
plication is prompted to proceed to the next iteration. Most of the threads in iterative 
DSM applications tend to access the same data pages repeatedly. The multiple writer 
protocol of the release consistency in the Teamster testbed leads to the generation of a 
large number of communication messages relating to the data consistency maintenance 
of pages rendered redundant because of the thread migration operations. Therefore, the 
second reconfiguration subphase, referred to as the communication minimization sub-
phase, deletes the data pages no longer required from the threads on the original proces-
sor and removes the corresponding copysets from the page owners. Consequently, the 
volume of redundant messages generated by the dynamic workload distribution scheme 
is substantially reduced.  

5. EXPERIMENTS 

Teamster is a user-level DSM system built on a cluster of Intel 80x86 PCs, running 
the Sun Solaris 8 operating system, and connected by a 100Mbps Fast Ethernet network. 
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Teamster removes the need for data address translation between processors by providing 
a single, global address space for user applications. Furthermore, Teamster supports mul-
tiple memory consistency protocols, i.e. sequential and eager released, in order to reduce 
the communication costs associated with maintaining data consistency. 

This study implements seven iterative applications, i.e. SOR, Matrix Multiplication 
(MM), Gaussian Elimination (GE), Jacobi, N-Body, MPEG4 Encoder (MPEG4) and 
Vector Quantization (VQ), to evaluate the effect of including memory resource consid-
erations in the workload distribution decision-making process. Each application creates 
32 threads to handle its tasks. The SOR application is used in the modeling of natural 
phenomena, e.g. for determining temperature gradients over a square area given the tem-
perature values at the area boundaries. The MM application computes the results of C = 
A * B, where A, B, and C are N-by-N square matrices. The Gauss Elimination (GE) ap-
plication solves sets of simultaneous equations by eliminating variables from successive 
equations. The Jacobi application is a well-known mathematical method commonly used 
in the scientific engineering domain to solve the two-dimensional, first-order finite dif-
ference equation resulting from the Laplace equation. N-Body is an astrophysics applica-
tion used to calculate the forces among particles. This application calculates the total 
force on every particle and updates the particles’ positions and other attributes in a 
self-gravitating space system according to Newton’s acceleration theorem. The MPEG4 
application uses a full-search method to establish the motion vector of each frame in a 
sequence. Finally, VQ is a well-known image compression technique.  

5.1 Experimental Environments 

Table 1 presents the details of the computer clusters used to execute the seven test 
applications. The first experimental group comprises two environments, in which the 
four nodes have identical CPU power processors, but each node has a different amount of 
available physical memory. In the second experimental group, the physical memory size 
of each individual node is constant, but each node has a different CPU power processor. 
In the third experimental group both the CPU power and the available physical memory 
size of the individual nodes may vary. Note that in all experimental groups, the volume 
of available physical memory at each node is controlled using a tool with negligible 
costs. 

Table 1. Organization of computer clusters used for executing test applications. 

Group 1 Node 0 (Mhz - MB) Node 1 (Mhz - MB) Node 2 (Mhz - MB) Node 3 (Mhz - MB) 
A 500 - 100 500 - 85 500 - 70 500 - 55 
B 500 - 90 500 - 75 500 - 60 500 - 45 

Group 2 Node 0 (Mhz - MB) Node 1 (Mhz - MB) Node 2 (Mhz - MB) Node 3 (Mhz - MB) 
A 500 - 100 400 - 100 400 - 100 300 - 100 
B 500 - 80 400 - 80 400 - 80 300 - 80 

Group 3 Node 0 (Mhz - MB) Node 1 (Mhz - MB) Node 2 (Mhz - MB) Node 3 (Mhz - MB) 
A 500 - 90 400 - 75 400 - 60 300 - 45 
B 500 - 45 400 - 60 400 - 75 300 - 90 
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Each application is executed with four different policies in the first subphase of the 
prediction phase, i.e. an initial policy, a CPU-based policy, a MEM-based policy, and a 
CPU&MEM-based policy. The initial policy distributes the application threads equally 
onto the cluster nodes. The CPU-based policy considers only the CPU resource, and ig-
nores the memory resource. The MEM-based policy distributes threads according to the 
amount of physical memory space each processor is able to provide. Finally, the CPU& 
MEM-based policy, which is the default policy of the proposed workload distribution 
scheme, considers both CPU resources and memory resources simultaneously. 

5.3 Experimental Results 

Fig. 3 shows the iteration times of the experimental applications with each workload 
distribution policy for the two test environments within Experimental Group 1. The four 
bars within each cluster correspond to the four different policies and the height of each 
bar represents the iteration time of that particular application. For a long-term iterative 
DSM application, a performance improvement is defined as a reduction in the average 
execution time of the iterations. Therefore, this study uses the iteration time rather than 
the execution time to assess the program performance improvement since the tested 
DSM applications are all iterative and exhibit a regular behavior. 

  
Fig. 3. Experimental results for group 1. 

From Fig. 3, it is clear that the CPU-based policy is ineffective in reducing the itera-
tion time, i.e. there is no difference between the iteration time obtained when the CPU- 
based policy is applied and that achieved when the initial policy is used. However, both 
the MEM-based policy and the CPU&MEM-based policy achieve significant reductions 
in the iteration times of the SOR, MM, GE and Jacobi applications, which require huge 
amounts of memory resources. When executing these applications, some of the cluster 
nodes within the Experimental Group 1 environments have insufficient physical memory 
space to carry out their tasks. Therefore, they suffer from memory swapping delays when 
the initial or CPU-based policies are applied and these delays increase the iteration time 
significantly. However, in all of the trials performed in the Experimental Group 1 envi-
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ronments other than the MM application in Group 1(B), both the MEM- based policy and 
the CPU&MEM-based policy provide consistently superior results for the SOR, MM, GE 
and Jacobi applications. Additionally, it is noted that the CPU-based policy outperforms 
the MEM-based policy when applied to the MM application in the Group 1(B) test envi-
ronment. This observation is explained by the fact that the influence of the memory 
swapping delays is less than that of the CPU load imbalance for the MM application in 
Group 1(B).  

In Fig. 3, the results of the last three applications, i.e. N-Body, MPEG4 and VQ, are 
different from those of the first four applications, i.e. the performance of the CPU-based 
policy for these three applications rivals that of the CPU&MEM-based policy. The rea-
son for this is that the memory demands of these three applications are quite small and 
hence every node in the experimental environment has sufficient available memory re-
sources to meet the demands of its local working threads regardless of the workload dis-
tribution policy applied. Consequently, the MEM-based policy generates a load imbal-
ance situation and therefore reduces the performance of the three applications. However, 
the CPU&MEM-based policy considers both the memory resources and the computation 
resources of each node and therefore produces the best results in each of the Experimen-
tal Group 1 environments. 

  
Fig. 4. Experimental results for group 2. 

Fig. 4 shows the iteration times of the experimental applications with each workload 
distribution policy for the two test environments within Experimental Group 2. In general, 
it can be seen that the CPU-based policy is more effective than the MEM-based policy in 
both the first (A) and the second (B) test environments. However, in Experimental Group 
2(B), the performance of the Jacobi application suffers when the CPU-based policy is 
applied in place of the MEM-based policy. This observation is explained by the signifi-
cant memory swapping delays caused by the CPU-based policy. Specifically, the influ-
ence of the memory swapping delay is greater than that of the CPU load imbalance. Fig. 
4 also demonstrates that the proposed CPU&MEM-based policy consistently provides a 
superior performance of the SOR, MM, GE and Jacobi applications within these two 
environments.      
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As in the case of Experimental Group 1, the results of the N-Body, MPEG4 and VQ 
applications differ from those of the SOR, MM, GE and Jacobi applications in both Ex-
perimental Group 2 environments. This is again explained by the relatively small mem-
ory demands of these three applications, which ensures that each node has sufficient 
memory resources to accommodate the demands of its local working threads irrespective 
of the workload distribution policy applied. Consequently, the MEM-based policy, which 
does not consider CPU resources, fails to improve the system performance of these three 
applications. It is observed that the proposed CPU&MEM-based policy provides the 
same results as the CPU-based policy for the N-Body, MPEG4 and VQ applications 
when the memory resources of each node satisfy the memory demands of the local work-
ing threads.     

  
Fig. 5. Experimental results for group 3. 

 
Fig. 5 shows the iteration times of the experimental applications with each workload 

distribution policy for the two test environments within Experimental Group 3. In this 
experimental group, the two environments are designed with various combinations of 
CPU and memory resources. Even though the behavior of each of the experimental ap-
plications is regular, it is very difficult to predict the optimum workload distribution in 
this type of environment. The results in Fig. 5 reveal that the performances of the SOR 
and Jacobi applications with the MEM-based policy are better than those achieved with 
the CPU-based policy in both test environments. This observation suggests that the be-
haviors of the SOR and Jacobi applications are more sensitive to memory resources than 
to CPU resources. As in Experimental Groups 1 and 2, Fig. 5 confirms that no matter 
how chaotic the combinations of CPU and memory resources, the proposed CPU& 
MEM-based policy consistently optimize the performance of all the experimental appli-
cations.    

6. CONCLUSIONS AND FUTURE WORK 

This paper has demonstrated the importance of incorporating memory resource con-
siderations into the workload distribution scheme when attempting to improve the per-
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formance of DSM applications. The influence of memory resources on the DSM program 
performance has been thoroughly analyzed, and the results of this analysis have been 
applied to develop a novel workload distribution scheme implemented on a testbed re-
ferred to as Teamster. The proposed workload distribution scheme efficiently maintains 
the workload balancing of user DSM applications with comparatively low overheads. 
The experimental results have confirmed that memory swapping latency costs play a 
crucial role in determining the overall performance of DSM applications. The proposed 
workload distribution scheme outperforms conventional methods which consider the 
processor power only or the available physical memory only when attempting to mini-
mize the execution time. The workload distribution scheme proposed in this paper is in-
tended for clusters of computers having only one processor. However, an increasing 
number of computers have more than one processor nowadays. Accordingly, in a future 
study, the current study group intends to develop an advanced workload distribution 
method for DSM systems clustered with SMP (Symmetric Multiple Processors) ma-
chines.  
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