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Applications with divisible loads have such a rich source of parallelism that their 

parallelization can significantly reduce their total completion time on grid computing 
environments. However, it is a challenge for grid users, probably scientists and engineers, 
to develop their applications which can exploit the computing power of the grid. We 
propose a performance-based skeleton algorithm for implementing divisible load appli-
cations on grids. Following this skeleton, novice grid programmers can easily develop a 
high performance grid application. To examine the performance of programs developed 
by this approach, we apply this skeleton to implement three kinds of applications and 
conduct experiments on our grid test-bed. Experimental results show that programs im-
plemented by this approach run more rapidly than those using conventional scheduling 
schemes. 
 
Keywords: divisible load application, workload distribution, grid computing, message 
passing interface, parallel programming 
 
 

1. INTRODUCTION 
 

As computers become more and more inexpensive and powerful, computational 
grids which consist of various computational and storage resources have become prom-
ising alternatives to traditional multiprocessors and computing clusters [1, 2]. Basically, 
grids are distributed systems which share resources through the internet. On the one hand, 
users can access more computing resources through grid technologies. On the other hand, 
grid environments require effective management to operate in an efficient way. More-
over, the heterogeneity and dynamic changing of the grid environment make it different 
from conventional parallel and distributed computing systems, such as multiprocessors 
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and computing clusters. Therefore, it is a challenge to utilize the grid efficiently. 
Applications with divisible loads are a rich source of parallelism. Programmers can 

identify independent work units within a program and dispatch them to different proces-
sors to reduce its completion time. Nowadays, parallelizing a program for grid platforms 
mainly depends on human efforts. Automatic transformation of parallel applications into 
Grid-aware ones was investigated in [3-5], but their approach is not suitable for a novice 
programmer to develop parallel applications from scratch. Furthermore, it is difficult for 
programmers to acquire real-time grid status information and to appropriately distribute 
workload within a program to heterogeneous working nodes. 

Our idea is to provide programmers with a template program, which takes care of 
details related to grid infrastructure. All the programmers need to do is to fill in the 
skeleton algorithm with application-specific code fragments. The resulting program can 
appropriately distribute the workload of the program to working nodes according to dy-
namic node performance. That is, we propose a performance-based skeleton algorithm, 
which serves as a template for programmers to develop a parallel program. To verify this 
approach, we apply this skeleton to three types of applications, Matrix Multiplication, 
Association Rule Mining and Mandelbrot Set Computation, and execute them in a grid 
test-bed. Experimental results show that programs developed by this approach can ex-
ploit the computing power of the grid. 

The primary advantage of this approach is that a programmer can easily develop 
high performance programs to execute on grid environments. The high performance re-
sults from two features of this skeleton. First, it is a hybrid method. In its first phase, 
workload is distributed statically according to node performance to reduce scheduling 
overhead. In the second phase, the remaining load is dispatched dynamically to achieve 
load balance. Second, it utilizes real-time information to estimate the performance of the 
grid. The skeleton acquires grid status information from a monitoring tool and estimates 
the performance of computing and communication resources with the information. 

Our contributions can be summarized as follows. First, this paper proposes a per-
formance-based skeleton for programmers to develop high-quality parallel applications 
with ease. Programs developed by this approach can utilize grid information to adap-
tively distribute workloads within a program. Second, we apply this skeleton to three 
kinds of divisible load applications on our grid test-bed. Consequently, experimental 
results show the obvious effectiveness of our approach. Note that this work aims at a 
general skeleton of workload distribution, instead of proposing a new loop scheduling 
scheme or a novel data mining algorithm. 

The remainder of this paper is organized as follows. In section 2, divisible load the-
ory and dynamic loop scheduling schemes are reviewed. In section 3, we describe the 
proposed approach to developing a performance-based parallel application. Next, the 
configuration of our grid test-bed is specified and experimental results on three types of 
applications are also presented in section 4. Finally, the concluding remarks are given in 
the last section. 

2. RELATED WORK 

In this section, the theory of divisible load is briefly reviewed. Then, we present 
some well-known loop scheduling schemes. 
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2.1 Divisible Load Theory 
 

Divisible Load Theory (DLT) addresses the case where the total workload can be 
partitioned into any number of independent sub-jobs. In the past, the theory of divisible 
load has been widely investigated in static heterogeneous systems. However, it has not 
been widely applied to computing grids, which are characterized by heterogeneous re-
sources and dynamic environments. This problem has been discussed in the past decade, 
and a good review can be found in [6]. In [7, 8], an exact method for divisible load was 
proposed, which was not from a dynamic and pragmatic viewpoint as ours. DLT focuses 
on coarse-grain loads, which are a pool of jobs or programs. However, the target of this 
work is fine-grain loads, which might be loop iterations within a program, for example. 
We focus on the problem of parallelizing an application with divisible loads for rapid 
execution on grid environments. Since grid environments are dynamically changing and 
heterogeneous, the problem is obviously different from the traditional DLT problem. 
 
2.2 Loop Scheduling Schemes 
 

Conventionally, loop scheduling schemes are classified according to the time when 
the scheduling decision is made. Static loop scheduling schemes make a scheduling deci-
sion at compile time, and equally assign the total iterations of a loop to processors. It is 
applied when each iteration of a loop takes roughly the same amount of time, and the 
compiler knows enough related information before compilation. Its advantage is less 
overhead at runtime, while the disadvantage is possible load imbalance. Well-known 
static scheduling schemes include Block Scheduling, Cyclic Scheduling, Block-D Sched-
uling, Cyclic-D Scheduling, etc. However, these schemes are not suitable for dynamic 
grid environments. 

Dynamic loop scheduling schemes make a scheduling decision at runtime. Its dis-
advantage is more overhead at runtime, while the advantage is load balance. Several self- 
scheduling schemes are restated here as follows.  
 
Pure Self-scheduling (PSS)  This is a straightforward dynamic loop scheduling algo-
rithm [9]. Whenever a processor becomes idle, a loop iteration is assigned to it. This al-
gorithm achieves good load balance but also induces excessive overhead. 
 
Chunk Self-scheduling (CSS)  Instead of assigning one iteration to an idle processor at 
one time, CSS assigns k iterations each time, where k, called the chunk size, is a constant. 
When the chunk size is one, this scheme is PSS, as discussed above. If the chunk size is 
set to the bound of the parallel loop equally divided by the number of processors, this 
scheme becomes static scheduling. A large chunk size will cause load imbalance while a 
small chunk size is likely to result in too much runtime overhead. 
 
Guided Self-scheduling (GSS)  This scheme can dynamically change the number of 
iterations assigned to each processor [10]. More specifically, the next chunk size is de-
termined by dividing the number of remaining iterations of a parallel loop by the number 
of available processors. The property of decreasing chunk size implies an effort is made 
to achieve load balance and to reduce the runtime overhead. By assigning large chunks at 
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the beginning of a parallel loop, one can reduce the frequency of communication be-
tween the master and slaves. 
 
Factoring Self-scheduling (FSS)  In some cases, GSS might assign too much work to 
the first few processors, so that the remaining iterations are not time-consuming enough 
to balance the workload. The Factoring algorithm addresses this problem [11]. The as-
signment of loop iterations to working processors proceeds in phases. During each phase, 
only a subset of the remaining loop iterations (usually half) is divided equally among the 
available processors. Therefore, it balances loads better than GSS does when the compu-
tation times of loop iterations vary substantially. In addition, the synchronization over-
head of Factoring is not significantly larger than that of GSS. 
 
Trapezoid Self-scheduling (TSS)  This approach tries to reduce the need for synchro-
nization while still maintaining a reasonable load balance [12]. TSS(Ns, Nf) assigns the 
first Ns iterations of a loop to the processor starting the loop and the last Nf iterations to 
the processor performing the last fetch, where Ns and Nf are both specified by the pro-
grammer or the system. This algorithm allocates large chunks of iterations to the first few 
processors and successively smaller chunks to the last few processors. Tzen and Ni pro-
posed TSS(N/2p, 1) as a general selection. 
 

Table 1 shows the chunk sizes for the self-scheduling schemes above with respect to 
a loop with 1000 iterations. Besides, the number of available processors is 4. 
 

Table 1. Sample partition size. 
Scheme Sample partition size 

PSS 1, 1, 1, 1, 1, 1, 1, 1, 1, … 
CSS(125) 125, 125, 125, 125, 125, 125, 125, 125 

FSS 125, 125, 125, 125, 63, 63, 63, 63, 31, … 
GSS 250, 188, 141, 106, 79, 59, 45, 33, 25, … 
TSS 125, 117, 109, 101, 93, 85, 77, 69, 61, … 

 
In [13], the authors enhanced well-known loop self-scheduling schemes to fit an ex-

tremely heterogeneous PC cluster environment. A two-phased approach was proposed to 
partition loop iterations and it achieved good performance in heterogeneous test-beds. 
For example, GSS can be enhanced by partitioning α percent of the total iterations ac-
cording to their performance weighted by CPU clock in the first phase. Then, the re-
mainder of the workload is still scheduled by GSS. This enhanced scheme is called 
NGSS. 

In [14], NGSS was further enhanced by dynamically adjusting the parameter α ac-
cording to system heterogeneity. A performance benchmark was used to determine 
whether target systems are relatively homogeneous or relatively heterogeneous. In addi-
tion, the types of loop iterations were classified into four classes, and were analyzed re-
spectively. The scheme enhanced from GSS is called ANGSS. 

Our previous work [15, 16] presents different heuristics to the parallel loop self- 
scheduling problem. This paper extends the idea of performance-based scheduling to 
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design a performance-based skeleton for developing high performance applications on 
grids. This approach is applied to both the parallel loop self-scheduling application and 
the association rule mining application. 

3. APPROACH 

In this section, the system model is introduced first. Then, the parameters of per-
formance ratio and static-workload ratio are described. Finally, we present the skeleton 
algorithm for the performance-based workload distribution. 

3.1 The System Model 

The modern Grid paradigm consists of clusters that are controlled by local schedul-
ers. Also, there are meta-schedulers which have a global view of the whole infrastructure. 
However, the viewpoint of a user application is simpler, which considers how many re-
sources it can use. Therefore, the abstract view of the system is modeled by a master- 
slave paradigm, which is represented by a star graph, G = (N, E). In this graph, N means 
the set of all nodes on the grid, and E is the set of all edges between the master and the 
slaves. For example, as shown in Fig. 1, N is {P0, P1, …, Pn} and E is {L1, L2, …, Ln}. In 
this example, P0 is the master node and the other n nodes, P1, …, Pn, are slave nodes. 
Conceptually, there is a virtual link Li connecting the master node and a slave node Pi. In 
reality, Li may be composed of several networking segments connected by switches 
or/and routers. 

 
Fig. 1. Abstract overview of the system model. 

 
In this model, there are two kinds of attributes associated with nodes, constants and 

variables. The values of the constant attributes do not vary during the lifetime of the node. 
For example, CPU clock speed, memory size, etc. are all constant attributes. On the other 
hand, the values of the variable attributes may fluctuate during the lifetime of the node. 
For example, CPU loading, available memory size, etc. are all variable attributes. In the 
following sections, the two kinds of attributes are utilized to model the heterogeneity of a 
dynamic grid. 

Programming models are generally classified by the way memory is used. In the 
shared memory model each process accesses a shared address space, while in the mes-
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sage passing model processes communicate with other processes by sending and receiv-
ing messages. The message-passing paradigm is adopted in this paper. Basically, the pro-
grammer assumes the system consists of several processors, each with its own memory 
space, and writes a program to run on each processor. However, parallel programming 
generally requires communication between the processors to complete a task. The char-
acteristic of the message-passing paradigm is that the processors communicate by send-
ing messages instead of shared memory. Therefore, in the message-passing model, proc-
essors can not access each other’s memory directly. 

3.2 Performance Ratio 

The concept of performance ratio was previously defined in [15, 16] in different 
forms and parameters, according to the requirements of applications. In this work, the 
skeleton algorithm uses a performance function to model the heterogeneous performance 
of the dynamic grid nodes. The purpose of calculating performance ratio is to estimate 
the current processing capability for each node. With this metric, the program can dis-
tribute appropriate workloads to each node, and load balance can be achieved. The more 
accurate the estimation is, the better the load balance is. 

Assume that m is the number of attributes. For example, this study adopts three at-
tributes: CPU speed, CPU loading, and Bandwidth. Therefore, m is equal to 3. To esti-
mate the performance of each slave node, a performance function (PF) is defined for a 
slave node j:  
 

PFj(V1, V2, …, Vm)                                                  (1) 
 
where Vi, 1 < i < m, is a variable of the performance function. In more detail, the vari-
ables could include CPU speed, networking bandwidth, memory size, etc. We propose to 
utilize a Grid resource monitoring tool, TIGER [17], to acquire the values of attributes 
for all slaves. The PF for node j is defined as  

1 2

Ni i

j j j
j

i i i
node node S

CS CL B
PF w w

CS CL B
∀ ∈ ∀ ∈

= × + ×
∑ ∑

                            (2) 

where 
 
 N is the set of all available grid nodes. 
 CSi is the CPU clock speed of node i, and it is a constant attribute. The value of this 
parameter is acquired by the TIGER tool. 

 CLi is the CPU loading of node i, and it is a variable attribute. The value of this pa-
rameter is acquired by the TIGER tool. 

 Bi is the bandwidth (Mbps) between node i and the master node. The value of this pa-
rameter is also acquired by the TIGER tool. 

 w1 and w2 are the weights of the first and second term, respectively. The sum of the 
two parameters is equal to one. The values of the two parameters are decided by ex-
periments on different combinations of the two parameter values. The combination 
with the best performance is adopted for actual use. 
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The performance ratio (PR) is defined to be the ratio of all performance functions. 
For instance, assume the PF values of three nodes are 1/2, 1/3 and 1/4. Then, the PR is 
1/2 : 1/3 : 1/4; i.e., the PR of the three nodes is 6 : 4 : 3. In other words, if there are 13 
loop iterations, 6 iterations will be assigned to the first node, 4 iterations will be assigned 
to the second node, and 3 iterations will be assigned to the last one. 
 
3.3 Determination of Static-Workload Ratio (SWR) 
 

Another important factor to be estimated is the variation degree among all units of 
workloads. For example, Mandelbrot Set Computation is a problem involving irregular 
workloads. In each iteration of a loop, the workload is different and varies significantly, 
as shown in Fig. 2. Obviously, a distribution scheme which does not consider the effect 
of irregular workload could not estimate PR accurately. 
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Fig. 2. The Mandelbrot set on [− 1.8, 0.5] to [− 1.2, 1.2] an 800 × 800 pixel window. 

 
We propose to use a parameter, SWR (Static-Workload Ratio), ranging from 0 to 1, 

to estimate the proportion of the workload which can be statically scheduled, alleviating 
the effect of irregular workload. In order to take advantage of static scheduling, the SWR 
proportion of the total workload is dispatched according to Performance Ratio. The de-
sign rationale is based on a conservative heuristic to estimate the irregular degree of 
workloads among all iterations. If the workload of the target application is regular, SWR 
can be set to be 1. However, if the application has irregular workload, such as Mandel-
brot Set Computation, it is reasonable to reserve some amount of workload for load bal-
ancing. We propose to randomly take five sampling iterations, and compute their execu-
tion time. Then, the SWR value for the target application i is determined by the following 
formula. 

i
i

i

min
SWR

MAX
=                                                      (3) 

where 
 
 mini is the minimum execution time of all sampled iterations for application i. 
 MAXi is the maximum execution time of all sampled iterations for application i. 
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For example, for a regular application with uniform workload distribution, the five 
sampled iterations are the same. Therefore, the SWR is 1, and the whole workload can be 
dispatched according to Performance Ratio, with good load balance. However, for an-
other application, the five sampling execution time might be 7, 7.5, 8, 8.5 and 10 seconds, 
respectively. Then the SWR is 7/10. Therefore, 70% of the workload would be scheduled 
statically according to PR, while 30% of the workload would be scheduled by a dynamic 
scheme. 
 
3.4 The Skeleton Algorithm 
 

Based on the estimated information of workload distribution and node performance, 
we propose a skeleton algorithm for performance-based workload distribution on grid 
environments. This algorithm is based on a message-passing paradigm, and consists of 
two modules: a master module and a slave module. The master module makes the sched-
uling decision and dispatches workloads to slaves. On the other hand, the slave module 
processes the assigned work. This algorithm is just a skeleton, and the detailed imple-
mentation, such as data preparation, parameter passing, etc., might be different according 
to requirements of various applications. 

Our algorithm is composed of four stages. In stage one, the related information are 
acquired. Then, stage two calculates the Static-workload Ratio and Performance Ratio. 
Next, (SWR)-percent of the total workload is statically scheduled according to the per-
formance ratio among all slave nodes in stage three. Finally, the remainder of the work-
load is scheduled by a dynamic scheme for load balancing. The algorithm of our ap-
proach is described as follows. 
 
Module MASTER 
Initialization 
/* Stage 1: Gathering the information */ 

collect the following information from the TIGER tool: 
− CPU_Loading 
− CPU_Clock_Speed 
− Network_Bandwidth 

collect the execution time of 5 sampled iterations 

/* Stage 2: Calculate two scheduling parameters */ 
calculate SWR of the workload 
calculate Performance Ratio of all slave nodes 

/* Stage 3: Static Scheduling */ 
dispatch the (SWR)-percent of workload according to Performance Ratio 
probe and receive for returned results 

/* Stage 4: dynamic Scheduling */ 
dispatch the (100-SWR)-percent of workload by a dynamic scheme 

Finalization 
END MASTER 
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Module SLAVE 
Initialization 
While (a chunk of workload arrives) { 

receive the chunk of workload 
Compute on this chunk 

Send the result to the Master 
} 
Finalization 
END SLAVE 

4. EXPERIMENTAL RESULTS 

To verify our approach, a grid test-bed was built, and three types of application pro-
grams were implemented using the skeleton: Matrix Multiplication, Association Rule 
Mining and Mandelbrot Set Computation. The former two applications have regular 
workloads, while the last has irregular workload. 
 
4.1 Grid Test-bed: TIGER Project 
 

A metropolitan-scale Grid computing platform named TIGER Grid [17] (standing 
for Taichung Integrating Grid Environment and Resource) has been built in a project 
leaded by Tunghai University. The TIGER grid interconnects computing resources of 
universities and high schools and shares available resources among them, for investiga-
tions in system technologies and high performance applications. This novel project 
shows the viability of implementation of such a project in a metropolitan city. The par-
ticipating schools of the TIGER Grid computing platform are all located in Taichung, 
Taiwan. The project of constructing such a grid infrastructure was to share computational 
resources of each institution. 

We have built a grid test-bed based on part of the TIGER Grid, using the following 
middleware: 
 
 Globus Toolkit 4.0.2 [2, 18].  
 MPICH-G2 library 1.2.6 [19].  

 
The master node is at Tunghai University (THU), and the slave nodes are located at 

Tunghai University (THU), Providence University (PU), Li-Zen High School (LZ), and 
Hsiuping Institute of Technology School (HIT). Fig. 3 shows our grid test-bed, and the 
specifications of the grid test-bed are shown in Table 2. Fig. 4 shows the real-time status 
of the grid test-bed acquired by the monitoring tool. 

In this study, we have implemented several scheduling schemes for the purpose of 
evaluation. For readability of experimental results, the brief description of all imple-
mented schemes is listed in Table 3. 

The conventional static scheduling scheme is to equally distribute the total workload 
to each worker at compile time. However, this scheme is obviously not suitable for dy-
namic and heterogeneous environments. Therefore, a weighted static scheduling scheme  
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Table 2. Specifications of computing resources on the test-bed. 

Site Host CPU Type Clock 
(Mhz) RAM NIC Linux 

Kernel 
Globus 
Version 

THU delta1 Intel Pentium 4 3001 1GB 1G 2.6.12 4.0.1 
 delta2 Intel Pentium 4 3001 1GB 1G 2.6.12 4.0.1 
 delta3 Intel Pentium 4 3001 1GB 1G 2.6.12 4.0.1 
 delta4 Intel Pentium 4 3001 1GB 1G 2.6.12 4.0.1 

LZ lz01 Intel Celeron 898 256MB 10/100 2.4.20 4.0.1 
 lz02 Intel Celeron 898 256MB 10/100 2.4.20 4.0.1 
 lz03 Intel Celeron 898 384MB 10/100 2.4.20 4.0.1 
 lz04 Intel Celeron 898 256MB 10/100 2.4.20 4.0.1 

HIT gridhit0 Intel Pentium 4 2800 512MB 10/100 2.6.12 4.0.1 
 gridhit1 Intel Pentium 4 2800 512MB 10/100 2.6.12 4.0.1 
 gridhit2 Intel Pentium 4 2800 512MB 10/100 2.6.12 4.0.1 
 gridhit3 Intel Pentium 4 2800 512MB 10/100 2.6.12 4.0.1 

PU hpc09 AMD Athlon XP 1991 1GB 1G 2.4.22 4.0.1 
 hpc10 AMD Athlon XP 1991 1GB 1G 2.4.22 4.0.1 
 hpc11 AMD Athlon XP 1991 1GB 1G 2.4.22 4.0.1 
 hpc12 AMD Athlon XP 1991 1GB 1G 2.4.22 4.0.1 

 

Table 3. Description of all implemented programs.  

Scheduling Scheme Description Reference 
static Weighted static scheduling  
gss Dynamic scheduling (GSS) [10] 
fss Dynamic scheduling (FSS) [11] 
tss Dynamic scheduling (TSS) [12] 

ngss Fixed α scheduling + GSS [13] 
angss Adaptive α scheduling + GSS [14] 
pwd Proposed scheduling  

 
Fig. 3. The logical diagram of our grid test-bed. 
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Fig. 4. The snapshot of the monitoring tool on the TIGER grid. 

 
is adopted in this experiment. The principle of partitioning is according to the CPU clock 
speed of each processor. A faster node will get more workloads than a slower one pro-
portionally. 

To reduce errors of experimental results, execution time in each experiment is ob-
tained by averaging the results of five repetitive executions. 
 
4.2 Application 1: Matrix Multiplication 
 

Matrix Multiplication is a fundamental operation in many numerical linear algebra 
applications. Its efficient implementation on parallel computers is an issue of prime im-
portance when providing such systems with scientific software libraries. Consequently, 
considerable effort has been devoted in the past to the development of efficient parallel 
matrix multiplication algorithms, and this will remain a task in the future as well. Many 
parallel algorithms have been designed, implemented, and tested on different parallel 
computers or cluster of workstations for matrix multiplication. 

In this application, the workload is loop iterations. The Master module is responsi-
ble for the distribution of workloads. When a slave node becomes idle, the master node 
sends two integers to the slave. The two numbers represent the beginning and ending 
pointers to the assigned chunk respectively. In other words, every node has a copy of the 
input matrices locally, so data communication is not significant in this kind of imple-
mentation. Therefore, communication cost between the master and the slave is low, and 
the dominant cost is the computation of matrix multiplication. The C/MPI code fragment 
of the Slave module for Matrix Multiplication is listed as follows. As the source code 
shows, a column is the atomic unit of allocation. 
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MPI_Recv(buf, count, MPI_FLOAT, source, tag, MPI_COMM_WORLD, &status); 
f = 0; 
while (status.MPI_TAG > 0)  
{ 
for (i = 0; i < (count/SIZE); i++)  
    for (j = 0; j < SIZE; j++) 
        c[i * SIZE + j] = 0.0; 

    /* computing */ 
    for (i = 0; i < (count/SIZE); i++) 
        for (j = 0; j < SIZE; j++) 
       for (k = 0; k < SIZE; k++) 
         c[i * SIZE + j] += buf[i * SIZE + k] * b[k * SIZE + j]; 

   /* sent result*/ 
    MPI_Send(c, count, MPI_FLOAT, 0, tag, MPI_COMM_WORLD); 
    free(buf); 
    free(c); 

    /* get another size */ 
    MPI_Probe(0, MPI_ANY_TAG, MPI_COMM_WORLD, &status); 
    source = status.MPI_SOURCE; 
    tag = status.MPI_TAG; 
    MPI_Get_count(&status, MPI_FLOAT, &count); 
    buf = (float*)malloc(count * sizeof(float)); 
    c = (float*)malloc(count * sizeof(float)); 
    MPI_Recv(buf, count, MPI_FLOAT, 0, MPI_ANY_TAG, MPI_COMM_WORLD, &status); 
    } 
} 
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Fig. 5. Execution time for matrix multiplication with different values of parameters. 

 
The appropriate values for w1 and w2 in Eq. (2) are determined by the following ex-

periment. Fig. 5 depicts the execution time of our PWD scheme for input matrix size 
1024 × 1024, with w1 set from 0 to 100 percent. When w1 is 90 percent, the execution is 
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minimal in this experiment. The reason might be that the communication cost is low in 
this program. Therefore, we adopt 90 and 10 as the w1 and w2 value, respectively. 

First, we want to compare the proposed PWD scheme with previous schemes with 
respect to the execution time. Fig. 6 illustrates the execution time of weighted static 
scheduling, GSS, FSS, TSS, NGSS, ANGSS and our PWD scheme, with input matrix 
size 512 × 512, 1024 × 1024, 1536 × 1536 and 2048 × 2048 respectively. The results are 
shown as follows. 

0

50

100

150

200

250

300

350

400

450

512 * 512 1024 * 1024 1536 * 1536 2048 * 2048

Matrix Size

Ti
m

e 
(s

)

static gss fss tss ngss angss pwd

 
Fig. 6. Execution time for matrix multiplication with different input sizes. 

 
Among these schemes, PWD performs better than other schemes. The reason is that 

PWD accurately estimates the PR, and takes the advantage of static scheduling, thus re-
ducing the runtime overhead. The static scheme obviously performs worse than other 
dynamic schemes. It is reasonable to say that the static scheme is not suitable for a dy-
namic environment, with respect to performance. 

It is interesting that traditional self-scheduling schemes (FSS and TSS) perform 
slightly better than NGSS and ANGSS. However, this result is inconsistent with that of 
previous research [13, 14]. The reason might be that the parameter α is set too high, 75. 
If the parameter α is set appropriately, it is possible for NGSS and ANGSS to perform 
better, as previous work has shown. This case also indicates that NGSS and ANGSS suf-
fer from the difficulty of determining an appropriate parameter value. 
 
4.3 Application 2: Association Rule Mining 
 

Data mining, or known as knowledge discovery, is to acquire interesting knowledge 
from large-scale databases [20]. Data mining techniques include association rule mining, 
classification, cluster analysis, etc. The objective of association rule mining is to discover 
correlation relationships among a set of items. The well-known application of association 
rule mining is market basket analysis. This technique can extract customer buying be-
haviors by discovering what items they buy together. The managers of shops can place 
the associated items at the neighboring shelf to raise their probability of purchasing. For 
example, milk and bread are frequently bought together. 
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The formulation of association rule mining problem is described as follows [21, 22]. 
Let I be a set of items, and D a database of transactions. Each transaction in D is a subset 
of I. An association rule is a rule of the form A ⇒ B, where A ⊂ I, B ⊂ I, and A ∩ B = ∅. 
The well-known algorithm for finding association rules in large transaction databases is 
Apriori. It utilizes the Apriori property to reduce the search space. 

As the rising of parallel processing, parallel data mining have been well investigated 
in the past decade. Especially, much attention has been directed to parallel association 
rule mining. A good survey can be found in [23]. Traditional parallel data mining work 
assumes data is partitioned and transmitted to the computing nodes in advance. However, 
it is usually the case in which a large database is generated and stored in some station. 
Therefore, it is important to efficiently partition and to distribute the data to other nodes 
for parallel computation.  

In this application, the workload is a database of transactions. We applied the skele-
ton to implement the Apriori algorithm and its data distribution. Specifically, the paral-
lelized version of Apriori we adopt is Count Distribution (CD) [21, 22]. Our datasets are 
generated by the tool indicated in [22]. The parameters of the synthetic datasets are de-
scribed in Table 4. 
 

Table 4. Description of our dataset. 

Dataset Number of Transactions Average Transaction Length Number of Items 
D10KT5I10 10,000 5 10 
D50KT5I10 50,000 5 10 
D100KT5I10 100,000 5 10 
D150KT5I10 150,000 5 10 

 
The C/MPI code fragment of the Slave module for Count Distribution is listed as 

follows. For simplicity, only the first two frequent set computations are shown. 
 
MPI_Status status; 
// MPI_Request request; 
 
    /* receive data from master at first time */    
    MPI_Probe(0, MPI_ANY_TAG, MPI_COMM_WORLD, &status); 
    source = status.MPI_SOURCE; 
    tag = status.MPI_TAG; 
    MPI_Get_count(&status, MPI_INT, &count); 
    MPI_Recv(&db[1][0], count, MPI_INT, source, tag, MPI_COMM_WORLD, &status); 
    // Large 1 computation 
    // initialize local_L1 to 0 
    for (i = 0; i ≤ N_item; i++) local_L1[i] = 0; 
    // count local # items 
    for (i = 1; i ≤ count/LENGTH; i++) 
    { 
        for (j = 1; j ≤ db[i][0]; j++) 
        { 
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            local_L1[db[i][j]]++;  
        } 
    } 
        MPI_Reduce(local_L1, large_1, N_item+1, MPI_INT, MPI_SUM, 0, MPI_COMM_ 

WORLD); 
    MPI_Barrier(MPI_COMM_WORLD); 

    // Large 2 computation 
    // initialize local_L2 to 0 
    for (i = 0; i ≤ N_item * N_item; i++) local_L2[i] = 0; 
    // count local # 2-items 
    for (i = 1; i ≤ count/LENGTH; i++) 
    { 
        for (j = 1; j ≤ db[i][0] − 1; j++) 
        { 
            for (k = j + 1; k ≤ db[i][0]; k++) 
            { 
                local_L2[(db[i][j]) * N_item + db[i][k]]++; 
            }  
        } 
    } 

    MPI_Reduce(local_L2, large_2, N_item*N_item+1, MPI_INT, MPI_SUM, 0, MPI_COMM_ 
WORLD); 

    MPI_Barrier(MPI_COMM_WORLD); 
    } 
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Fig. 7. Execution time for association rule mining with different values of parameters. 

 
The appropriate values for w1 and w2 in Eq. (2) are decided by the following ex-

periment. Fig. 7 shows the execution time of the proposed scheme for dataset size 50K 
transactions, with w1 set from 0 to 100 percent. When w1 is 60 percent, the execution is 
minimal in this experiment. The reason might be that the communication cost is higher 
than that of Matrix Multiplication. Therefore, we adopt 60 and 40 as the w1 and w2 value, 
respectively. 
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Fig. 8. Performance of data partition schemes for different datasets. 

 
Fig. 8 illustrates the execution time of different scheme, with input size 10K, 50K, 

100K and 150K transactions respectively. Experimental results show that the scheme 
implemented by the skeleton got better performance than other schemes.  

From this experiment, we can see the significant influence of workload distribution 
schemes on the total response time. In grid environments, network bandwidth is an im-
portant criterion to evaluate the performance of a slave node. The Static scheme can not 
adapt to the practical network status. In contrast to Static, when communication cost be-
comes a major factor, dynamic schemes would be well adaptive to the network environ-
ment. 

Moreover, the reason why PWD got the best performance can be attributed to the 
appropriate estimation of node performance, especially for the attribute of network 
bandwidth. In grid computing environments, CPU speed is not the only factor to deter-
mine the node performance. A node with the fastest CPU is not necessary the node with 
optimal performance. 
 
4.4 Application 3: Mandelbrot Set Computation 
 

The Mandelbrot set computation is a problem involving the same computation on 
different data points which have different convergence rates [24]. This operation derives 
a resultant image by processing an input matrix, A, where A is an image of a pixels by b 
pixels. The resultant image is one of a pixels by b pixels. The Mandelbrot Set Computa-
tion has been implemented using the skeleton. The Master module is responsible for the 
distribution of workload. When a slave node becomes idle, the master node sends two 
integers to the slaves. As implemented in Matrix Multiplication, communication cost 
between the master and the slave is low, and the dominant cost is the computation of the 
Mandelbrot Set. The C/MPI code fragment of the Slave module for Mandelbrot Set 
Computation is listed as follows. 
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MPI_Probe(0, MPI_ANY_TAG, MPI_COMM_WORLD, &status); 
source = status.MPI_SOURCE; 
tag = status.MPI_TAG; 
MPI_Get_count(&status, MPI_INT, &count); 
MPI_Recv(&b[0], count, MPI_INT, source, tag, MPI_COMM_WORLD, &status); 
while (status.MPI_TAG > 0) { 
/* Compute pixels in parallel */ 
     
    // t1 = MPI_Wtime(); 
    for (i = 0; i < Nx * Ny; i++)pix_tmp[i] = 0.0; 
 
    for (y = b[0]; y < b[1]; y++){ 
       for (x = 0; x < Nx; x++){ 
          c.real = Rx_min + ((double)x * (Rx_max − Rx_min)/(double)(Nx − 1)); 
          c.imag = Ry_min + ((double)y * (Ry_max − Ry_min)/(double)(Ny − 1)); 
          pix_tmp[y * Nx + x] = cal_pixel(c); 
       } // for x 
    } // for y 
    /* sent result */ 
    MPI_Send(&b[0], count, MPI_INT, 0, tag, MPI_COMM_WORLD); 
    /* get another size */ 
    MPI_Probe(0, MPI_ANY_TAG, MPI_COMM_WORLD, &status); 
    source = status.MPI_SOURCE; 
    tag = status.MPI_TAG; 
    MPI_Get_count(&status, MPI_INT, &count); 
    MPI_Recv(&b[0], count, MPI_INT, source, tag, MPI_COMM_WORLD,&status); 
    } 
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Fig. 9. Execution time for Mandelbrot set computation with different values of parameters. 

 
The appropriate values for w1 and w2 in Eq. (2) are determined by the following ex-

periment. Fig. 9 illustrates the execution time of the PWD scheme for input image size 
192 × 192, with w1 set from 0 to 100 percent. When w1 is 80 percent, the execution is 
minimal in this experiment. The reason might be that the communication cost is low in 
this program. Therefore, we adopt 80 and 20 as the w1 and w2 value, respectively. 
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Fig. 10. Execution time for Mandelbrot set computation with different input sizes. 

 
In the following experiment, we want to compare the execution time of previous 

schemes with the implemented program. Fig. 10 illustrates the execution time of GSS, 
FSS, TSS, NGSS, ANGSS and our PWD scheme, with input image size 64 × 64, 128 × 
128, 192 × 192 and 256 × 256 respectively. The execution time of weighted static sched-
uling is omitted because its results are significantly inferior to other schemes. According 
to the experience in the Matrix Multiplication application, the parameter α in NGSS is set 
to 30. The results are shown as follows. 

Among these schemes, PWD still performs better than other schemes. The reason is 
also that PWD accurately estimates the PR, and takes the advantage of static scheduling, 
thus reducing the runtime overhead. 

Traditional self-scheduling schemes (GSS, FSS and TSS) perform worse than NGSS 
and ANGSS. The reason is that it is difficult to efficiently schedule irregular workload 
for conventional dynamic schemes. If the parameter α is set appropriately, it is certain for 
NGSS and ANGSS to perform better than GSS, FSS and TSS, as previous work has 
shown. 

4.5 Discussion 

In this section, several issues are discussed to clarify the proposed approach. In gen-
eral, task scheduling in grid systems mainly focuses on fine grain parallelism, under the 
consideration of the system heterogeneity and the message-passing communication. 
However, one goal of grid computing is to exploit potential parallelism in internet-scale 
grid environments. In addition to coarse grain parallelism, we think that it is beneficial to 
exploit fine grain parallelism in grid systems. The first reason is to improve utilization. 
The proposed approach provides a mechanism for programmers to efficiently utilize the 
idle resources located in grid systems. The preliminary results presented in this study 
show that exploiting fine grain parallelism is promising. Second, the difficulties resulting 
from system heterogeneity and the message-passing communication can be overcome by 
advanced techniques, which also motivate novel research topics. Therefore, a number of 
researches focus on exploiting fine grain parallelism for loop scheduling and data mining 
in grid systems, such as [25-29].  
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In section 3.1, we mention that there are two kinds of attributes associated with 
nodes, constants and variables. It is an interesting issue to investigate the relationship 
between these two kinds of attributes. We think that each device in a grid system can be 
associated with these two kinds of attributes. Taking CPU for example, CPU clock speed 
is a constant attribute while CPU loading is a variable attribute. With respect to the rela-
tionship between the two kinds, it is intuitive that the node with high CPU speed will get 
more tasks to execute, resulting in high CPU loading. It is probable that other devices 
also reveal similar properties. However, this work does not focus on this topic. We plan 
to take this relationship into further consideration in our future work.  

In this work, we primarily propose a useful grid programming skeleton, which 
adopts a performance-based heuristic to distribute workloads, for master-slave applica-
tions. However, we believe that it is possible to extend this approach to non-master-slave 
applications, such as P2P applications. We explain the reason as follows. The program-
ming skeleton abstracts our experiences in programming master-slave applications for 
grid environments, which is a difficult task for novice programmers. Nevertheless, with 
the skeleton, all a programmer need to do is just to fill the application-specific program 
codes into the skeleton. If a programmer can code a sequential program, then it is straight- 
forward to transform it to a grid application. To extend the skeleton idea to non-master- 
slave applications, such as P2P networks, we need to acquire experiences and expertise 
in P2P programming. In addition, the lack of global statistical in non-master- slave ap-
plications is a problem to be solved. In P2P networks, the performance-related informa-
tion can be gathered through social activities, such as gossip protocols. This will be an 
interesting research topic in our future work.  
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Fig. 11. Speedup for loop scheduling using different cluster or grids. 

 
To address the performance improvement with respect to single processor, we have 

conducted the following experiment. The experimental setting is similar to those in sec-
tion 4.2, Matrix Multiplication. Fig. 11 shows the speedup results for matrix size of 1536 
× 1536. For each of THU, LZ, HIT and PU clusters, four processors participating in 
computation, while “all” means that 16 processors of the four cluster participating in 
computation. Therefore, the optimal speedup for the four clusters is 4, while the optimal 
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speedup for the “all” configuration is 16. The result shows that the proposed approach 
performs better than other methods with respect to speedup. However, the speedup for 
the “all” configuration is only near to 10. This might result from the heterogeneity of 
CPU speed.  

Finally, we do not mean to try all the possible values of weight (w1) in order to get 
high performance. Instead, we think the weight determination in this work should be ap-
plication-specific. In addition, the weights for different applications should be calculated 
in a preprocessing phase, and be improved incrementally by a knowledge-based ap-
proach, which will be another interesting issue. In addition, we consider the weight as a 
pre- computed value, representing an expertise acquired from previous executions. So, it 
is not necessary to reflect this overhead in the timing comparison. Also, since the weight 
is not generated before each execution, it is not an optimal setting with respect to the next 
execution. However, in a dynamically changing grid environment, it is difficult to define 
and find an optimal solution. Therefore, the objective of the proposed heuristic algorithm 
is to generate a better solution than existing algorithms. The experimental results show 
that the proposed algorithm performs well in the dynamic grid. Therefore, we think the 
weight is related to the type of application, instead of problem size. That is, it is likely 
that the weights obtained from the same type of applications, such as computation-inten- 
sive applications, can be applied to the same type of application. 

5. CONCLUSIONS 

We have proposed a skeleton algorithm for programmers to easily develop high 
performance applications on dynamic and heterogeneous grid environments. This skeleton 
algorithm uses a performance-based approach to distribute workloads within a program 
to working nodes. In this approach, the system heterogeneity is estimated by perform-
ance functions, and the variation of workload is estimated by Static-Workload Ratio. On 
our grid platform, programs implemented by the proposed approach can obtain perform-
ance improvement on previous schemes. In the near future, we will implement more 
types of application programs to verify our approach. Also, automatic transforming leg-
acy MPI programs to performance-based ones will be investigated. 
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