
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 26, 659-672 (2010)

659

Processing Strategy for Global XQuery Queries Based on
XQuery Join Cost

JONG-HYUN PARK AND JI-HOON KANG*

Department of Computer Science and Engineering
Chungnam National University
Daejeon, 305-764 South Korea

XML is a standard for exchanging and formatting data over the Internet and XQuery

is a standard query language for searching and integrating XML data. Therefore, it is a
natural choice for interoperability to use XQuery over the Internet. Global XQuery que-
ries search and integrate heterogeneous data, being distributed in the local systems.

In order to process efficiently global XQuery queries, their processing strategy is
important because an improper processing strategy could produce an enormous number
of intermediate results or execute redundant expressions. In distributed relational data-
bases, there are some techniques for processing global SQL queries. Unfortunately,
however, the structure of the data handled by the XQuery language is quite different from
the one by the SQL. The XQuery language deals with semi-structural data, i.e. tree-
structured data, while SQL deals with well-structured data, i.e., the table-shaped data.
These structural differences make it difficult to apply the techniques for global SQL que-
ries into for global XQuery queries. Especially this paper considers the join cost for de-
vising a query processing strategy. Therefore, we define some problems for estimating
the join cost in XQuery queries and propose ECNJ algorithm for solving these problems.
Also this paper proposes the query processing strategy and evaluates the strategy by im-
plementing a prototype system.

Keywords: global XQuery processing, estimating join cost, XQuery, join cost, XQuery
processing strategy

1. INTRODUCTION

XML has emerged as a leading language for representing and exchanging data over
the Internet. In recent years, there have been a number of researches focusing on the inte-
gration of XML data and heterogeneous data including relational data [1, 2]. One of the
methods for integration is to make non-XML data to be considered as XML data by using
XML views [2-4]. The global XML view integrates the local XML views, and thus users
can see and search the distributed heterogeneous data via the global XML view. At this
time, one of the standard query languages for searching the integrated heterogeneous data
is XQuery language [5].

The users can consider only the global XML view and can give queries in XQuery
and then get results, but they do not need to know either where the data is or how the
data is shaped. Such queries are just global XQuery queries over the integrated hetero-
geneous data.

In order to process efficiently global XQuery queries, it is important to decide a proc-
essing strategy of the queries. Global queries consist of some local queries for sending to

Received March 11, 2008; revised May 19, 2008; accepted August 14, 2008.
Communicated by Chih-Ping Chu.
* Corresponding author.

JONG-HYUN PARK AND JI-HOON KANG

660

each local system. Therefore, to map out strategies for processing the local queries af-
fects the total processing time of global queries. Especially, global XQuery queries natu-
rally contain value-based join operations among local systems such as “=” and “eq”.
Since the join operations are expensive for processing a query, its processing strategy is
very important for efficient processing of global XQuery queries. Therefore, there are
some studies on the efficient processing of join operations and one of these studies is that
select a processing strategy with minimum join cost by estimating the join cost. In case of
SQL, there are already some researches for estimating the join cost of global SQL queries.
However, we cannot apply the methods for estimating the cost of join operations in SQL
queries into XQuery queries without modification because of the structural difference
between relational data and XML data. Contributions of this paper are threefold. The first,
we define some problems to apply the method for estimating the join cost of SQL queries
into for XQuery queries. The second, we propose an algorithm for estimating the join
cost described in global XQuery queries and processing strategy of the queries based on
our algorithm. Three, we implement a prototype for our strategy and evaluate.

The rest of the paper is organized as follows. In section 2, we present related works.
Section 3 the Join Cost-Based Strategy. In section 4, we evaluate our strategy. Finally, we
summarize the contributions of this paper and indicate some directions for future research
work in section 5.

2. RELATED WORK

The destination of global queries is distributed local systems and a lot of global que-
ries contain operations for joining among local systems. [6-8] have proposed methods for
efficient processing global SQL queries in distributed environments. They basically con-
sider the structure of the global SQL queries. One of these researches is that estimates
the join cost and selects the join order with minimum cost because join operations need
high cost for its processing [8, 9]. The processing method for global XQuery queries also
is similar to the case of the global SQL queries. [6-8] have proposed a cost model for
estimating the join cost in SQL queries and a method for selecting the join order. Their
approaches refer to statistics from relational view for estimating optimal join order. That
idea can be referred for XQuery queries because XQuery query expressions borrow fea-
tures from SQL [5]. For example, a primary key in table is similar to ‘id’ attribute in
XML document. However, we can not fully accept their cost model for processing the
XQuery queries because of the structural difference between SQL and XQuery. There-
fore, this paper describes about what is the difference between SQL and XQuery. Also
the paper proposes strategy for processing global XQuery queries by referring to the
techniques for processing the global SQL queries. Of course, communication cost over
distributed environment also affects the query processing time [6, 7, 9, 10]. However,
this paper focus on the join cost.

In research field on XML query processing, there are some studies for efficient
processing of join operations in XML queries [11, 12]. Especially, they focus on the
processing cost of XPath expression, I/O cost, and the execution time of operations etc.
However, their approaches are useful in only native XML systems and are not general
methods. Thus, their methods depend on the storing method or indexing technique of a

XQUERY PROCESSING BASED ON ESTIMATING JOIN COST

661

specific application. Therefore, we cannot accept previous techniques for the goal of this
paper. Our approach can be used in any XQuery engine and in any middleware for proc-
essing global XQuery queries because we only uses the given input query instances and
query views for deciding the processing strategy.

3. JOIN COST-BASED STRATEGY

It is difficult to decide the join order amongst the local queries by using the global
query instances only. Therefore, by using local views this paper proposes a method for
estimating the join cost and deciding the join order based on the estimated cost.

3.1 Considerations

The XML view can be expressed in various languages like XML DTD, XML Sche-

ma, and XQuery. The XML view contains the information about the structure of stored
data, occurrence information, cardinality, etc. In the case of SQL, the cardinality of the
attributes described in the view is used to estimate the join cost [8, 14]. Therefore, this
paper also assumes that we can obtain the cardinality information of each node stored
from the local XML views. Of course, we can use the Count() Function which is defined
in XQuery Functions and Operations [15], if the local view does not serve the cardinality
information. However, this paper is not interested in estimating the cardinality even if
there are already some researches about it in [16, 17].

Fig. 1 shows the three views which describe the structure of data stored in the three
local systems. The labels beside each node express the pair of occurrence and cardinality.
For example, the label (?, 4) for the ‘b1’ node expresses that the ‘b1’ node can occur
zero or one time in the ‘b’ node as a child node and the total number of the ‘b1’ node
stored in the local system is four. Table 1 is a sample XQuery query written toward the
three local views in Fig. 1. This query contains two join operations between the ‘A’ sys-
tem and ‘B’ system and between the ‘B’ system and ‘C’ system.

Fig. 2 shows the join relationships among the three local systems which are target
systems for the query in Table 1. The first join operation joins the value of the ‘a2’ node
in the ‘A’ system with the value of the ‘b2’ node in the ‘B’ system. The second join op-
eration joins the value of the ‘b3’ node in the ‘B’ system with the value of the ‘c1’ node
in the ‘C’ system. Fig. 3 shows the three kinds of possible strategies for processing the
query in Table 1. Fist case is that processes the join operation between the A and B

root_B

b

(1,1)

(+,25)

(1,25)

A System B System C System

b3b1
(?,4)

(*,12)b2

(1,1)
root_A

a

a1

(+,5)

(1,5)
(?,3)

a2

root_C

c

c2

(1,1)

(+,20)

(?,10)
(1,20)

c1

Fig. 1. Sample XML views.

JONG-HYUN PARK AND JI-HOON KANG

662

Table 1. Sample global XQuery query written toward three views in Fig. 1.
for $A in doc(“A.xml”)/root_A/a
for $B in doc(“B.xml”)/root_B/b
for $C in doc(“C.xml”)/root_C/c
for $A2 in $A/a2
for $B2 in $B/b1/b2
for $B3 in $B/b3
for $C1 in $C/c1
where $A2/text() = $B2/text() and $B3/text() = $C1/text()
return
 <result>{$A/a1, $C/c2}</result>

root_B

b

(1,1)

(+,25)

(1,25)

A System B System C System

b3b1
(?,4)

(*,12)b2

(1,1)
root_A

a

a1

(+,5)

(1,5)
(?,3)

a2

root_C

c

c2

(1,1)

(+,20)

(?,10)
(1,20)

c1

Fig. 2. The join relationships of the query in Table 1.

A B C

AB C

a2 b2 b3 c1

b3 c1

A BCa2 b2

ABC

Fig. 3. The possible strategies for processing a query with two join operations.

systems and then joins the C system, second case is that joins between the B and C sys-
tems and then joins the A system, and last case processes all join operations in single
system. However, third case is not in our consideration because our goal is that decides
the join order. Consequently, the number of possible strategies can be calculated by the
permutation formula in the statistics [13]. Thus the number of possible strategies depends
on the number of the join operations. If the number of join operations is n, then the num-
ber of possible strategies is nPn and finally is calculated by n! [13]. In the case of our
example query, the number of possible strategies can be calculated by 2P2 because the
query contains two join operations, of course, when except the third case.

In order to select the optimal join order, one of the most popular techniques is to es-
timate the join cost of all possible processing methods and then select a method with the
minimal join cost [14, 18]. This paper calculates the join cost by estimating the number

XQUERY PROCESSING BASED ON ESTIMATING JOIN COST

663

of comparison times. For example, in the case of SQL, if the Fig. 3 is a join graph for an
SQL query, then the Table ‘B’ joins with the other two tables ‘A’ and ‘C’. If the join
operation with the Table ‘A’ is first executed, then the ‘b3’ attribute for the next join
operation is the filtered ‘b3’ attribute by the first join operation. Thus, the former join
operation filters out the operands for latter join operation. Therefore, we have to consider
how much to be filtered by the formal join operations. The following is an expression for
estimating the previous example query:

• Join Cost of A B = |A.a2 B.b2| = Join Selectivity(A.a2, B.b2) × |A.a2| × |B.b2|
• Join Cost of B C = |B′.b3 C.c1| = Join Selectivity(B′.b3, C.c1) × |B′.b3| × |C.c1|

(B′ is the filtered B).

Now we can apply the above expression from the sample XQuery query in Table 2.
To apply the |A.a2 B.b2|, we must know the join selectivity of the two attributes. In
the case of SQL queries, Join Selectivity can be calculated using three different kinds of
expressions in Table 2 and these expressions can be similarly applied for the XQuery
queries. For example, |$B/@id| expresses the total number of attribute “id” of node “B”.

Table 2. Sample global XQuery query written toward three views in Fig. 1.
Conditions SQL XQuery

One operand is ID (key) A.value = B.key →
1/|B.key|

$A/text() = $B/@id →
1/|$B/@id|

Two operands are ID (key) A.key = B.key →
1/Max(|A.key|, |B.key|)

$A/@id = $B/@id →
1/Max(|$A/@id|, $B/@id|)

Two operands are not ID (key) A.Value = B.Value →
1/Max(|A.key|, |B.key|)

$A/text() = $B/text() →
1/Max(|$A|, |$B|)

For the views in Fig. 2, we can estimate the Join Selectivity of the |A.a2 B.b2| as
following that:

• Join Selectivity(A.a2, B.b2) = 1/Max(|A.a2|, |B.b2|) = 1/|B.b2| = 1/12

Finally, the join cost of |A.a2 B.b2| can be estimated as following that;

• |A.a2 B.b2| = Join Selectivity(A.a2, B.b2) × |A.a2| × |B.b2| = 1/12 × 3 × 12 = 3

Thus, we can estimate that the |B′.b2| related with |B′.b3| is 3 among the total of 12.

Therefore, the selectivity of B.b2 is 3/12 and we can express that by Sel(B.b2) in this
paper. Even if we can estimate the |B′.b2| by the above method, we have to know the
|B′.b3| for estimating the cost for next join operation. However, in the case of XQuery
queries, there are some problems for estimating the |B′.b3| by using the |B′.b2|. The rea-
son is that the mapping relationship between the XML nodes is not fixed by the one-to-
one mapping.

Fig. 4 shows that the mapping relationship for relational data is only one-to-one and the
mapping relationship for XML data is one of the sixteen cases; one-to-one (1:1, 1:?, ?:

JONG-HYUN PARK AND JI-HOON KANG

664

Fig. 4. The each relationship between attributes in relational table and nodes in XML document.

1, ?:?), one-to-many (1:*, 1:+, ?:*, ?:+), many-to-one (*:1, *:?, +:1, +:?), and many-
to-many (*:*, +:*, *:+, +:+). The ‘*’, ‘+’, and ‘?’ symbols represent that their child ele-
ment occurrences are zero or more, one or more, and zero or one respectively. If the
above example query is an SQL query, then we can estimate the |B′.b3| by 3 because the
|B′.b2| is 3 and the mapping relationship between the ‘b2’ and ‘b3’ attributes is one-to-
one [19]. However, in the case of XQuery, we have to select the mapping relationship
between the ‘b2’ and ‘b3’ nodes. Therefore, this paper proposes the ECNJ (Estimating
Cardinality for Next Join) algorithm for estimating the cost of the next join operation.

3.2 Estimating the Join Cost

The ‘B’ local system stores the ‘b2’ node and the ‘b3’ node for joining the ‘A’ local
system and the ‘C’ local system, respectively. Fig. 5 shows the relationship between
these two nodes and the direction of the arrow shows the procedure of the ECNJ algo-
rithm:

b (+,25)

(1,25)b3b1 (?,4)

(*,12)b2

Root_B (+,25)

Fig. 5. Procedure of ECNJ algorithm.

In the previous section, we have estimated the selectivity for the ‘b2’ node. How-
ever, it is impossible to estimate the selectivity of the ‘b3’ node from the selectivity of
the ‘b2’ node because the ‘b2’ node is not directly linked to the ‘b3’ node. Thus, in order
to estimate the selectivity of the ‘b3’ node, we have to find the shortest path between the
two nodes as shown by the direction of the arrow in Fig. 5, as well as esti-mate the selec-
tivity between each pair nodes.

We classify the two kinds of relationship cases between the two nodes for applying
the ECNJ algorithm. One is the parent-to-child which estimates the selectivity of the

X Y

Table structure

X

Y

X

XML structure
1 : 1 (1|?) : (*|+)(*|+) : (1|?) 1 : (1 | ?)X : Y

Yn…Y1

X1 …

(*|+) : (*|+)

X1 … Xn

YY

X

? : (1|?)

Xn

Yn…Y1

XQUERY PROCESSING BASED ON ESTIMATING JOIN COST

665

child node by using the selectivity of a parent node and another is the child-to-parent
which is opposite to the parent-to-child. In Fig. 5, it is one of the child-to-parent cases to
estimate the selectivity of the ‘b1’ node by using the selectivity of the ‘b2’ node. Also
the case which estimates the selectivity of the ‘b3’ node by using the selectivity of the
‘b’ node is one of the parent-to-child cases.

ECNJ (Estimating Cardinality for Next Join) Algorithm

Definition 1 is used to estimate the cardinality of child nodes by using the selectiv-
ity of a parent node (parent-to-child case). For Definition 1, this paper assumes that
every parent node has the same number of child nodes when the occurrence character for
child nodes is ‘+’ or ‘*’.

Definition 1

PN: Parent Node
CN: Child Node
Sel(N): Selectivity of N Node
|CN '| = {|CN| × Sel(PN) If Occurrence of PN:CN = 1:(1 | ? | * | +)}

In an XML tree, the parent node for every node is only one except the root node.

Therefore, in the parent-to-child case, the occurrence character of a parent node is al-
ways ‘1’ and the occurrence character of a child node is ‘1’, ‘?’, ‘+’, or ‘*’. Finally, the
case for parent-child relationships is one of the four cases 1:(1 | ? | * | +). If the parent-
to-child relationship is 1:1 or 1:?, then we can directly apply the selectivity of the parent
node for the child node. However, although the parent-to-child relationship is 1:+ or 1:*
we can apply the selectivity of the parent node into the selectivity of the child node be-
cause of the assumption of this paper.

Fig. 6 depicts a part of the view in Fig. 2 and the structure of “b1” and “b2” nodes
stored in the ‘B’ system. As described in the view, the number of the stored ‘b2’ node is
12 and the ‘b1’ node is 4. Therefore, we can predict that every ‘b1’ node has three ‘b2’
nodes as its child node. If b11 and b12 among b11, b12, b13, and b14 nodes are filtered by
the previous join operation, the selectivity of the parent node ‘b1’ is 1/2. Thus, by Defi-
nition 1, we can estimate that the cardinality of the ‘b2’ node required for the next join
operations is 12 × 1/2 = 6.

Definition 2 is used to estimate the cardinality of the parent nodes for next join op-
eration by using the selectivity of the child node. This paper classifies the two cases for
estimating the cardinality of parent nodes. The first case is that the occurrence characters
of child node vs. parent node are 1:1 or 1:?. In this case, a parent node has only one child
node or no child node. Therefore, the cardinality of the parent node for the next join op-
eration is the same as or less than the number of child nodes. The second case is that the
occurrence characters of child nodes vs. parent nodes are 1:+ or 1:*. For example, if three
‘b2’ nodes are selected among twelve ‘b2’ nodes in Fig. 6, the possible number of parent
nodes is one, two, or three nodes. For instance, if the ‘b21’, ‘b22’, and ‘b23’ nodes are
selected, then the ‘b11’ node will be selected as its parent node. And if the ‘b21’, ‘b22’,
and ‘b24’ nodes are selected, then the ‘b11’ and ‘b12’ nodes will be selected. Also if the
‘b21’, ‘b24’, and ‘b27’ nodes are selected, then the ‘b11’, ‘b12’ and ‘b13’ nodes will be

JONG-HYUN PARK AND JI-HOON KANG

666

Fig. 6. The partial view and the structure of stored XML data.

Definition 2
m = {|CN|/|PN|}, The average number of child nodes
MinP = {⎡|CN ′|/m⎤}, The minimum value of the number of selectable parent nodes
MaxP = {Min(|PN|, |CN ′|), The maximum value of the number of selectable parent nodes

 Max

Min

 | | If Occurrence of : = (1 | ?):1
| | =

 () Else Occurrence of : = (| *):1
P

i P

CN CN PN
PN

i P i CN PN
=

′⎧ ⎫
⎪ ⎪′ ⎨ ⎬⋅ +⎪ ⎪
⎩ ⎭
∑

1

| | | |
Min

| | | |

(,)

() ,

i

i m CN PN i
j P

CN CN

C E j i C

P i
C

−

′⋅
=

′

⎛ ⎞
− ×⎜ ⎟⎜ ⎟

⎝ ⎠=
∑

 Probability when the number of selected parent
nodes is i.

1

| |
Min

(,) (,)
j

j m CN i j
l P

E j i C E l j C
−

′⋅
=

⎛ ⎞
= − ×⎜ ⎟⎜ ⎟
⎝ ⎠

∑

selected. Therefore, for estimating the cardinality of parent nodes, this paper estimates
the number of parent nodes in all possible cases and then calculates their average.

In order to estimate the cardinality, the first step is to calculate the range of the
number of selectable parent nodes and then estimate the probabilities for the selection of
each number in the range. The Definition 2 shows the formula for this calculation. In the
Definition 2, the MinP is the minimum number of selectable parent nodes and the MaxP
is the maximum number. For example, if three ‘b2’ nodes are selected among twelve
‘b2’ nodes in Fig. 6, the range of the number of selectable parent nodes ‘b1’ is from one
to three. Therefore, MinP is one and MaxP is three. If four ‘b2’ nodes are selected, its
range is from two to four. Thus, the MinP is the number of child nodes selected by the
former join operation divided by the average number of child nodes. Also, the MaxP is a
smaller one between the number of selected child nodes and the number of parent nodes.
For example, if we select three ‘b2’ nodes among twelve ‘b2’ nodes, then the number of
selectable parent nodes is one, two or three and the number of combinations of selectable
child nodes can be calculated by 12C3. The second step for estimating the cardinality of
parent nodes is to calculate the probability of selected parent nodes. To estimate the car-
dinality of parent nodes in the previous example, we have to calculate the probability for
possible three cases and average of the three probabilities because the number of select-
able parent nodes is one, two or three. When the number of selected parent nodes is one,
the selected child node set is one of these sets {b21, b22, b23}, {b24, b25, b26}, {b27, b28,

b11 b12b1 (?,4)

b2 (*,12)

b13 b14

b22b21 b23 b25b24 b26 b28b27 b29 b211b210 b212

XQUERY PROCESSING BASED ON ESTIMATING JOIN COST

667

b29}, or {b210, b211, b212}. Thus, the number of cases for combining three nodes among
‘b21’, ‘b22’, and ‘b23’ can be calculated by 3C3; and the number of cases for combining
one parent node among the total parent nodes can be calculated by 4C1. Therefore, in Fig.
6, the number of cases for selecting one parent node is calculated by 3C3 × 4C1 when
three child nodes are selected. Also, its probability P(1) is calculated by (3C3 × 4C1)/12C3.
The second case to calculate the probability is when the number of selected parent nodes
is two. If the selected three nodes are between b21 and b26, its parent nodes are the b11
and b12 nodes. Thus, we can use the 6C3 to calculate the number of cases for combining
the three nodes between the b21 node and b26 node. However, the 6C3 includes the num-
ber of cases when the number of selected parent nodes is one. Therefore, we have to sub-
tract the previous calculated number from the current number. Finally, the expression for
calculating the number of cases for combining three nodes among six nodes is 6C3 − (3C3
× 2C1). Also, the number of cases for combining two parent nodes among the total parent
nodes can be calculated by 4C2. Thus, probability P(2) is calculated by ((6C3 − (3C3 ×
2C1)) × 4C2)/12C3. The third case to calculate the probability is when the number of se-
lected parent nodes is three. The calculation for third case is also similar to the previous
two calculations and probability P(3) is calculated by ((9C3 − (3C3 × 3C1 + (6C3 − 3C3 ×
2C1) × 3C2)) × 4C3)/12C3.

In the case for the sample XML document in Fig. 6, if the three child nodes are se-
lected, each probability for selecting parent nodes follows that:

P(1) = (3C3 × 4C1)/12C3 = 4/220 = 1/55
P(2) = ((6C3 − 3C3 × 2C1) × 4C2)/12C3 = 108/220 = 27/55
P(3) = ((9C3 − (3C3 × 3C1 + (6C3 − 3C3 × 2C1) × 3C2)) × 4C3)/12C3 = 108/220 = 27/55

Therefore, the cardinality |b1′| required for next join operation is estimated by the

following expression:

Max

Min

1 27 27| | = () 1 2 3 2.5.
55 55 55

P

i P
PN i P i

=

′ ⋅ = × + × + × ≈∑

Finally, Sel(b1) is 2.5/4 which is estimated from the selectivity of the ‘b2’ node. The
next step for estimating the selectivity of the ‘b3’ node in Fig. 5 is to estimate the cardi-
nality of the ‘b’ node by using the selectivity of the ‘b1’ node. The occurrence relation-
ship between the ‘b1’ and ‘b’ node is ‘?:1’. Therefore, we can estimate that |b| is 2.5 and
Sel(b) is 2.5/25 by the Definition 1. The last step is to estimate the number of the ‘b3’
node by using the Sel(b). The occurrence relationship between the ‘b’ and ‘b3’ node is
‘1:1’ and this case is in the Definition 2. Therefore, |b3| is estimated by 25 × (2.5/25).

4. PERFORMANCE EVALUATION

In order to evaluate whether our join cost-based strategy for processing global
XQuery queries is relevant, we consider five local systems which use single hub in LAN.
The hardware and software of all local systems are the same following that the CPU has
an Intel(R) Pentium(R) M processor 1.6GHz, the memory size is 1.0GB, and the OS is

JONG-HYUN PARK AND JI-HOON KANG

668

Windows XP. The CPU for the global XQuery query processor is Intel(R) Pentium(R) 4
processor 3.2GHz and the memory size is 2.0GB. The XQuery engine for the local sys-
tems and the global query processor is Saxon Beta Version [20]. The Saxon Beta Ver-
sion is free and one of the most popular XQuery engines.

Fig. 7 shows five local XML views which describe the information of local data.
Table 3 describes the join structure of three sample XQuery queries which are written
toward local views in Fig. 7. The destinations of XQ1 are three local systems which store
“Closed_Auctions”, “People”, and “Open Auctions” data in XML respectively. The XQ1
contains two join operations between the ‘C’ local system and the ‘P’ local system and
between the ‘P’ local system and the ‘O’ local system. The destinations of XQ2 are four
local systems including “ItemsOfAmerica” data and the XQ2 contains three join opera-
tions between the local systems. The XQ3 is written toward five local systems including
“Categories” data and contains four join operations. For evaluation, this paper increases
the number of join operations between local systems. The reason is that evaluates the
dependency between our strategy and the number of join operations. Also, we increase
the size of sample data from 5MB to 25MB by 5MB increments for evaluating the scal-
ability property of our strategy.

o pen_auct ions

op en _auction

id type

(1 , 1)

(+ , 5 0)

(1 ,50) (1 , 50)

O Syst em

categories

categ ory

id name

i tems

item

id n am e incatego ry

category

(1, 1)

(+,20 0)

(1 ,20 0) (1 ,2 00) (+,3 00)

(1 , 300)

(1 ,1)

(1 , 5) (1 ,5)

I System T Syste m

(1 ,1)
closed _auctions

closed_ au ctio n

b uyer seller

personp ers on

people

person

id nam e watches

w atch

o pen_au ct ion

(+ ,10)

(1 , 10) (1 ,10)

(1 ,1 0) (1 ,10)

(1 , 1)

(+ ,1 00)

(1 ,1 00) (1 ,100) (? , 10 0)

(*, 5 00)

(1 ,5 00)

C System P System

(+, 5)

Fig. 7. Five local XML views.

Table 3. The structure of sample XQuery queries for evaluation.

XQ1

XQ2

XQ3

XQUERY PROCESSING BASED ON ESTIMATING JOIN COST

669

XQ1

XQ 2

XQ 3

Fig. 8. Estimated join cost and processing time of XQ1, XQ2, XQ3.

Fig. 8 shows the estimated join cost by our algorithm and the processing time of

XQ1, XQ2, and XQ3. Each graph shows the possible processing order of local queries.
For example, the method ((CP)O) first joins the ‘C’ local system with the ‘P’ system, and
then joins the ‘O’ system with the result of the first join. The three left graphs in Fig. 8

JONG-HYUN PARK AND JI-HOON KANG

670

describe the join cost estimated by our algorithm and the three right graphs describe the
real processing time. In the case of XQ2, the number of cases for the possible processing
order is six by 3P3. However, this paper shows five cases because the ((CP)(OI)) and
((OI)(CP)) are the same cases. In the case of XQ3, the number of cases for the possible
processing order is twenty-four by 4P4. Nevertheless, this paper describes just six of the
best cases.

The cost graphs shown by our Join Cost-Based Strategy are similar to the perform-
ance graphs by real processing time. Also, we know that our method is not dependant on
the number of join operations and the size of data. The result of the evaluation shows
that our strategy is one of the most efficient approaches for deciding the optimal proc-
essing order of local queries including join operations.

5. CONCLUSION

In this paper, we have proposed the join cost-based strategy for processing global
XQuery queries. For this strategy, we have addressed some considerations when process
global XQuery queries and especially defined the difference point for estimating the join
cost between SQL and XQuery queries. Also we have proposed the ECNJ algorithm
which is used to estimate the cost for next join operation. In order to evaluate our strat-
egy, we have implemented a prototype system and compared the estimated join cost with
real processing time. Our result can obviously be applied to any XQuery processor that
focuses on the integration and search of distributed data, since our processing strategy is
a general method.

Currently, our strategy considers a join cost. In the future, we hope to deal with the
communication cost and consider the features of functions and operations in XQuery
queries.

REFERENCES

1. G. Gardarin, A. Mensch, T. Dang-Ngoc, and L. Smit “Integrating heterogeneous
data sources with XML and XQuery” in Proceedings of the 13th International Work-
shops on Database and Expert Systems Applications, 2002, pp. 839-846.

2. D. H. Hwang and H. C. Kang, “XML view materialization with deferred incremental
refresh: The case of a restricted class of views,” Journal of Information Science and
Engineering, Vol. 21, 2005, pp. 1083-1119.

3. I. Manolescu, D. Florescu, and D. Kossmann “Answering XML queries over hete-
rogeneous data sources” in Proceedings of the 27th International Conference on
Very Large Data Bases, 2001, pp. 241-250.

4. J. Shanmugasundaram, J. Kiernan, E. Shekita, C. Fan, and J. Funderburk, “Querying
XML views of relational data,” in Proceedings of the 27th International Conference
on Very Large Data Bases, 2001, pp. 261-270.

5. XQuery 1.0, An XML Query Language, 2007.
6. I. Eldosouky, H. Arafat, and A. A. Eldin, “New heuristic approaches for improving

distributed query processing based on the enhancement of semi-join strategies,” in
Proceedings of the International Conference on Statistics, Computer Science and

XQUERY PROCESSING BASED ON ESTIMATING JOIN COST

671

Operational Research, 2001, pp. 1-15.
7. L. Liu, C. Pu, and K. Richine, “Distributed query scheduling service: an architecture

and its implementation,” International Journal of Cooperative Information Systems,
Vol. 7, 1998, pp. 123-166.

8. M. J. Yu and P. C. Y. Sheu, “Adaptive join algorithms in dynamic distributed da-
ta-bases,” Distributed and Parallel Databases, Vol. 5, 1997, pp. 5-30.

9. X. Lin and M. E. Orlowska, “An efficient processing of a chain join with the mini-
mum communication cost in distributed database systems,” Distributed and Parallel
Databases, Vol. 3, 1995, pp. 69-83.

10. C. Shahabi, L. Khan, and D. McLeod, “A probe-based technique to optimize join
queries in distributed internet databases,” Knowledge and Information Systems, Vol.
2, 2001, pp. 373-385.

11. N. May, S. Helmer, C. C. Kanne, and G. Moerkotte, “XQuery processing in natix
with an emphasis on join ordering,” in Proceedings of the 1st International Work-
shop on XQuery Implementation, Experience and Perspectives, 2004, pp. 49-54.

12. A. Halverson, J. Burger, L. Galanis, A. Kini, R. Krishnamurthy, A. N. Rao, F. Tian,
S. D. Viglas, Y. Wang, J. F. Naughton, and D. J. DeWitt, “Mixed mode XML query
processing,” in Proceedings of the 29th International Conference on Very Large
Data Bases, 2003, pp. 225-236.

13. J. T. McClave and T. Sincich, Statistics, Prentice Hall, New Jersey, 2006.
14. M. Steinbrunn, G. Moerkotte, and A. Kemper, “Optimizing join orders,” Technical

Report MIP9307, Faculty of Mathematic, University of Passau, Passau, Germany,
1993.

15. W3C, XQuery 1.0 and XPath 2.0 Functions and Operators, W3C Recommendation
23 January 2007, http://www.w3.org/TR/2007/REC-xpath-functions-20070123/.

16. A. Aboulnaga, A. R. Alameldeen, and J. F. Naughton, “Estimating the selectivity of
XML path expressions for internet scale applications,” in Proceedings of the 27th
International Conference on Very Large Data Bases, 2001, pp. 591-600.

17. J. Freire, J. Haritsa, M. Ramanath, P. Roy, and J. Simeon, “Statix: Making XML
count,” in Proceedings of ACM SIGMOD International Conference on Management
of Data, 2002, pp. 181-191.

18. M. Steinbrunn, G. Moerkotte, and A. Kemper, “Heuristic and randomized optimi-
zation for the join ordering problem,” The International Journal on Very Large Data
Base, Vol. 6, 1997, pp. 191-208.

19. C. Re, J. F. Brinkley, K. P. Hinshaw, and D. Suciu “Distributed XQuery,” in Pro-
ceedings of the 33rd International Conference on Very Large Data Bases, 2004, pp.
116-121.

20. Saxonica’s Saxon, http://saxonica.com/.

Jong-Hyun Park received his Ph.D. and M.S. degrees in
Computer Science from Chungnam National University, South
Korea, in 2002 and 2007, respectively, and his B.S. degree in
Computer Science from Woosong University, South Korea, in
1999. He is now working toward researcher in software Research
Center, Chungnam National University. His research interests

JONG-HYUN PARK AND JI-HOON KANG

672

include XQuery Optimization, XML database, Distributed XQuery Processing, XML
data mining, and web information system, ontology, information inference, semantic web,
information inference, data base systems.

Ji-Hoon Kang received the B.S degree in Seoul National
University, South Korea, in 1979 and the M.S. and the Ph.D.
degree in KAIST, South Korea, in 1981 and 1996, respectively.
From 1983 to 1985, He was with Samsung Electronics Co. and
worked in Cheil Wool Textile Co. from 1981 to 1983. Since
1985, he has been a Professor of the Faculty of Computer, The
Chungnam National University. His current research interests
include Web-based Information, xquery processing, xml, digital
library, semantic web, reasoning, hypermedia systems, database
systems.

