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ABSTRACT

A new edge detection technique based on detecting normal changes is pro-
posed. Most of the existing range-image-based edge detection algorithms base
their detection criterion on depth or curvature changes. However, depth or
curvature changes do not have keen sensitivity on detecting roof ( or crease
) edges. Using normal changes as a detecting criterion, on the contrary, can
easily detect the existence of a roof edge even the change across a boundary is
slight. Experimental results using both synthetic and real images demonstrate

that the proposed method is indeed superb in detecting roof ( or crease ) edges.
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1. Introduction

Extracting edges from an image is an important early vision process. It has been of
interest to research in the area of computer vision from the outset[1, 2, 3,4, 5,6, 7, 8,9, 10,
11, 12, 13]. The algorithms developed for edge detection can be classified into two kinds
depending on the type of acquired images. For an intensity image, the devised algorithms
usually aim to detect step edges. This is due to the natural limitation of this type of images.
For a range image, since the depth information is available, it is possible to correctly detect
both step edges and roof edges ( or crease edges ). In computer vision, since closed contours
are more useful for higher level image analysis and using range images is easier to achieve

this goal, we shall focus on range-image-based edge detection in this paper.

There are a number of good papers in range-image-based edge detection[4, 5, 6, 7,
8,9, 10, 11, 12, 13]. Chung et al.[11] proposed to use the first and second derivatives of
Gaussian kernels to detect jump edges and roof edges. Ghosal and Mehrotra[4, 13| proposed
a moment-based approach for detecting generalized step edges and pulse/staircase edges. In
[9, 10], the local polynomial approximation technique is adopted to estimate mean curvature
and Gaussian curvature. Then, the existence and strength of edges can be decided by
checking the sign changes of K-H map. Recently, Monga and Deriche[5] proposed a 3D
Deriche filter to directly compute curvatures without performing local surface fitting. The
edge points are the local extrema along the maximum curvatures direction. In [12], Wani
and Batchelor used some rules to judge the type of an edge. Their approach can distinguish

fold edge, semistep edge, and boundary edge.

In the above mentioned range-image-based edge detection algorithms [4, 5, 6, 7, 8, 9, 10,
11, 12, 13], only those points that have significant depth or curvature changes with respect
to their neighbors (e.g., step edges ) are identified as edge points. However, for those points

which have little depth or curvature variations with respect to their neighbors ( e.g., roof



edges ) are hardly detected. In this paper, we propose a new edge detection technique based
on the detection of normal changes. The normal value is an important characteristic in
differential geometry[10]. We find that by detecting significant normal changes, both step
edges and roof edges can be easily identified. The whole detection procedure is divided into
two stages. In the first stage, the normal of every point in a range image is decided. Since
all data points in a range image are discrete, the partial derivatives which are required
for deriving the normal value cannot be directly computed. For comparison purpose, we
propose to use quadratic surface fitting[10, 15], orthogonal wavelet-based approach[1, 18],
and non-orthogonal wavelet-based approach|[2], respectively, to approximate the original
object surfaces and then calculate the normal value of every discrete point on the surfaces.
After the normal vaules of all surface points are determined, the non-orthogonal wavelet
transforms ( dyadic wavelet transform ) proposed by Mallat et al.[2, 23] is applied to detect
those points which have significant normal changes as edge points. From the experimental
results, we find that the non-orthogonal wavelet-based approach can best approximate the
original surfaces from a discrete data set. Further, we also find that edge detection based
on normal change is a more promising alternative than other methods that based their
detection criterion on depth or curvature changes. The proposed edge detector can detect

both step edges and roof edges without introducing any edge models or heuristics.

The rest of this paper is organized as follows. In the first part of the next section, we
overview some geometric properties of a 3D surface in differential geometry point of view.
Then, we shall explain why normal change is good for detecting edges. In Section 3, three
possible methods are proposed to calculate normal values from a set of discrete surface
points. Section 4 describes how to detect edges based on normal changes. Experimental
results using both synthetic range images and real range images are reported in Section 5.

Section 6 includes some discussion issues and a concluding remark.



2. Range edge detection via normal change

In this section, we shall explain why normal change can be used as a cue for range edge
detection. Some properties of a 3D surface in differential geometry viewpoint which are
useful for edge detection will be addressed in Section 2.1. Then, a detailed explanation on

why normal change is a better choice for edge detection will be described in Section 2.2.
2.1. Some properties in differential geometry useful for edge detection

In this section, some basic properties of a 3D surface will be addressed from the differential
geometry viewpoint. These properties are useful for solving the edge detection problem on

range images.

Let S be a differentiable surface and p(u, v) be a point on § with coordinate (u,v). If
p. and p, are the partial derivatives of p(u,v) with respect to u and v, respectively, then
we can say Py, P, form the basis of a tangent plane, T'(p), of p(u, v) (Figure 1). The normal
of T'(p) can be defined as
7 ﬁu X ﬁv
T (1)

N = .
() = 15l

Here, the norm of any N(u, v) is always equal to 1 and all ]\7(u, v)'s lie on a unit sphere in

R3. The mapping, N : § — R®, is called the Gauss mapping, G(R?)[14].

Let ]\7(u, v) be differentiable, the mapping, dﬁ(u, v), is from G(R?) to a tangent plane,
G(R?), at ]\7(u, v). Since the tangent plane of N(u, v) is equal to that of p(u,v), dﬁ(u, v)
is also on the T'(p) plane, as shown in Figure 1. Thus, both dp and dN can be represented

by the linear combination of du and dv as follows [10]:

dp = p,du + p,dv, (2)



and

dN = N,du + N,dv. (3)

Here, p(u,v) is the gray level ( intensity image ) or depth ( range image ) at position (u, v).

Therefore, dp physically means the intensity or depth change with respect to p(u,v)’s

neighbors. As to N, and ]\7}” they are mathematically defined as N, = %—]j and N, = %—]Z.

Namely, they physically mean the normal change along u and v directions, respectively.
2.2. Why normal change is better for edge detection

Equations(2) and (3) represent, respectively, the depth ( or intensity) change and the
normal change with respect to the neighbors of p(u, v). The drawback of using Equation(2)
is that the depth ( or intensity) change can only be detected when its value is significant.
For example, Figure 2(a) shows an object sitting on the z-y plane, its corresponding range
image ( in intensity change format) is shown in Figure 2(c). If the same object is viewed
from another point as shown in Figure 2(b), then its base plane becomes u-v plane. From
this view, the object’s corresponding range ( or intensity ) change is shown in Figure 2(d).
The edge type shown in Figure 2(c) is the so-called step edge and the one shown in Figure
2(d) is known as a roof edge. Usually, people applies the first derivative in one direction
to locate edge positions. From Figure 2, it is obvious that the derivatives applied to the
x direction ( Figure 2(a)) and the u direction ( Figure 2(b)) both obtain zero values. The
derivatives applied to the y direction ( Figure 2(a)) and the v direction ( Figure 2(b)) will
have the responses shown in Figure 3(c) and Figure 3(d), respectively. From these outcome,
it is apparent that the step edge can be easily detected. However, the roof edge which is
actually existent is not detected. This phenomenon reflects the fact that simply using dp,
i.e., the intensity or depth change of p(u,v) with respect to its neighbors is not sufficient

to detect all physically existent edges.



Since dp'in Equation (2) cannot be applied to detect different types of edges, we propose
to use dN (Equation (3)) instead. In what follows, we shall explain why dN is chosen
to locate general edges. In Figure 4(a)-(d), four different types of crease(roof) edges,
including convex and concave edges, are shown. Figure 4(e)-(h),respectively, show their
corresponding normal changes across edges. These difference vectors are all normalized
and fit into Gaussian spheres. From the normal changes we find that their values are much
more significant than those of the depth ( or intensity) changes. Considering a more general
case shown in Figure 4(i), an edge occurs between a plane and a curve surface. It is clear
that the normal change between p, and p; ( two points located at different surfaces ) is
much larger than the normal change between ps and ps (two points belonging to the same
surface ) ( Figure 4(j) and (k)). Therefore, we conclude that the use of the normal change -
dN , instead of the depth ( or intensity ) change - dp, should be a good solution for finding

a more powerful edge detector.

3. Calculating normals from discrete surface points

In the previous section, we have discussed that the change of normals at every point on a
surface ( Equation (3)) can be used to detect the position of edges. The continuous domain
normal value derivation process is summarized as follows. Let p(u,v) = (u,v, f(u,v)) be a

point located on a surface. The partial derivatives of p(u, v) in v and v directions are :

p= 20t (10 £y ), ()
and

i)

o= 0 01 fyfu,0)) 5)



Plugging these two values into Equation (1), the value of N(u,v) can be rewritten as

_fu _fv 1

N(u,v) = 6

) (\/1+f5+f3 I+ 2+ 2 \/1+f5+f3) ®)

= (n1(u,v) no(u,v) nz(u,v)), (7)

where f, = 20t and f, = 280y (uv) = =L ny(u,0) = —=L— and

ns(u,v) = \/ﬁ The ranges of n;, ny, and n3 are all bounded by (-1,1). In real
implementation, since all data points acquired in a range image are discrete by nature, the
above calculation does not apply. Therefore, we have to seek some appropriate methods to
deal with this problem. In the implemenation stage, we split the edge detection procedure
into two steps. In the first step, the normal at every point on a surface should be decided.
This step involves the calculations of partial derivatives on a set of discrete data points.
Then, in the second step, a detector is required to accurately detect the points where
significant variation of normals are encountered. In order to calculate the normals on a set
of discrete surface points, some existing methods [2, 10, 15, 16, 17, 18, 19] can be applied.
For compariaon purpose, we choose quadratic surface fitting[10, 15], orthogonal wavelet-
based approach[20], and non-orthogonal wavelet-based approach[2] to calculate the normal
value of every point on a surface. In what follows, we shall briefly describe how to use these

methods to compute normals based on a set of discrete surface points.

A. Quadratic surface fitting
This method was proposed by Besl and Jain[10, 15]. In their method, the first and
second partial derivatives at a given location (u,v) are estimated by overlapping N x N
windows centered at pixel (u,v) and fitting local quadratic surfaces. The points in the
N x N window are associated with a position (u,v) € U x U, where N is odd and

U=—-N-1)/2,---,-1,0,1,---, (N —1)/2. The quadratic surface fit is obtained by



using a set of discrete orthogonal polynomials

do(u) =15 di(u) =13 do(u) = (u* — M(M +1)/3), (8)

where M = (N — 1)/2. The following b;(u) functions are normalized forms corresponding

to the ¢; polynomials and are defined as

; by (u) = k w; and by(u) = L <u2 - w) , (9)

bolu) = MM +1)(2M + 1) P(M)

1
N
where P(M) = 8/45M° + 4/9M* +2/9M?* — 1/9M? — 1/15M. The normalized b;(u) and
¢i(u) must satisfy the orthogonality relationship

Y bi(u)bj(u) = dij, (10)

uelU

where §;; = 1 if i = j and J;; = 0 otherwise. A surface function estimate g(u,v) is obtained

by
g(u,v) = Y aihi(u)pi(v), (11)

i+j<2
that minimizes the total square error term

= > (flu,v)—glu,v))? (12)

(u,v)eU?

where f(u,v) is the original surface function. The solution for the unknown coefficients

can be obtained by

ai; = Z f(u,v)b;i(u)b;(v). (13)

(u,0)eU?

Having the surface function estimate g(u, v), the first partial derivatives which are required
to derive the normal at position (u,v) can thus be determined by
9y

— = ayo and —g = aopq- (14)

ou Ov



B. Orthogonal wavelet-based approach[20]
This subsection will describe how to use an orthogonal wavelet basis to approximate a
surface and then based on the approximated surface to calculate the normal of every surface
point. The critical issues of using this approach include: (a) how to use an orthogonal
wavelet basis to describe a surface, (b) how to deal with the differentiation problem which
is a must in deriving normal values. Part of the subsequent derivations can be found in our

previous paper[20].

The process of wavelet transform represents a continuous function, f(z), with a limited
number of successive approximations, each of which is a smoothed version of f(z)[16]. In
this paper, we will employ the Daubechies scaling function[17, 18] to represent continuous
functions. Denote the Daubechies scaling function by ¢(z) and its dilation and translation
functions 2//2¢(2/z — n) by ¢;.(z) for j,n € Z. Let V; be the function space spanned by
{@jn(x)}tnez. In fact, {¢;.(2)}nez is an orthonormal basis of V;. The function spaces V},
j € Z have the following properties:

(1) V; C Vi4y forall j € Z and
(2) UZ o V; = L*(R).

Let S;f(z) be the projection of a continuous function, f(x) on Vj, i.e.

ij = ch,nqﬁj,n(x), n & Z,
where ¢;, = [ f(2)¢jn(x)dx. By property (2), {S;f(x)}cz is an approximation scheme of
f(x) in which S;;; f(x) is a better approximation than S;f(x) for all j € Z.

The difference between two successive approximations, S;f(z) and S;i1f(z), can be
expanded by another set of orthonormal basis v;, which is generated by dilation and

translation from another prototype function (), called the Daubechies wavelet function.

Let W]f(l') = Sj+1f(l‘) - S]f(.'L') We have

W;f(x) => djnthju(z),n € Z,



where 1; ,(v) = 29/2¢(27x —n) and d;,, = [ f(x)1);,dz. Therefore, any continuous function

f(z) € L*(R) can be approximated by

@)= S0 @)+ 33 dentbon(@). (15)

k=jnez

Since the derivation of normals requires the computation of the first partial derivatives on
surface points, the relationship between the original wavelet basis and its differentiated
form should be built. In what follows, we shall describe how to make this link. Let the

original signal ( or surface ) f(x) be represented as[19]
f(l‘) = Z Cn¢n(x)a (16)

where ¢, = [ f(x)¢(x — n)dz. Since [¢(x — n)dx =1 and ¢,(x) is compactly supported,
we can think of ¢(z — n) as a function which is similar to a delta function. Therefore, we

have

f) = [ f@)o(e —n)da. (17)

Substituting Equation (17) into Equation (16) and differentiating it, we have
fx) =3 f(n)g,(w). (18)

If we expand ¢, () based on the scaling function and wavelet function, then the following

equation is obtained,

bn(x) = 3 Tasdi() + 3 Thabiu(a), (19)
k >0,k
where
Dop = [ 60 = m)ow — k)d, (20)
and
D= [ 6= n)wi(o — k)d. (21)

10



The above formulation is the so-called wavelet-Galerkin method[19]. T, and FZ'%,C are

called connection coefficients[16]. These coefficients can be explicitly calculated for specific
families of wavelets. If we substitute Equation (19) into Equation (18), we have

f'(fL“):z;f (MTagdr(@) + 3 F()T), s(@). (22)

J=>0,n.k

By multiplying both sides of Equation (22) with ¢y (x) and integrating, we find that
(o) ~ /f’(a:)qﬁ(x —kydz =3 f(n)Tos = 3 Toof (k +n).

If the scaling function ¢(x) has N vanishing moments, the above equation can be further
simplified as[19]
2N -2
fx)y= > Tuof(k+n). (23)
n=—2N+2

The above discussions are all in one variable case. In what follows, we shall extend the

study to a two variable case. Let a function f(z,y) € L?(R) be represented as
f(xa y) = Z Zcm,n¢(x -—m,y — n)a (24)

where ¢,,, are the weighting coefficients, and ¢(z — m,y — n)'s are the wavelet basis of
a certain subspace at the fine resolution 0. According to the tensor product method|2,
17, 18, 21], we can set ¢(z,y) = ¢(x)p(y). Therefore, the 2-D connection coefficients of
Equation(24) can be converted into 1-D form. More details about the derivation can be
found in [20]. Finally, the partial derivatives in the x and y directions at point (i,7) can

be respectively simplified as follows

of (x,y . N2 . _
é ) l@a)=Gi) = fo(i:4) = D Dmof(i+m,j), (25)
v m=—2N-+2
and
of (z,y) . N2 .
ay n=—2N+2

11



where ['; o are the connection coefficients with N=k vanishing moments. With Equations
(25) and (26), we can calculate the normal value of every point on a surface which is

approximated by linear combination of orthogonal wavelet bases.

C. Non-orthogonal wavelet-based approach
In this approach, the most important issue is to choose a set of continuous and differentiable
“smoothing” functions. A smoothing function #(z)[2] is a function whose integral is equal
to 1 and converges to 0 at infinity. Let f(x) be a discrete function which is composed of a

set of discrete data as follows :

sample value ifxr=---,-1,0,1,---,
o= 1)

otherwise.

Based on the above mentioned f(z) and #(x), a new continuous and differentiable function

h(x) can be defined by convolving f(x) and (z), that is,
hz) = (f #0)(x), z € R. (28)

Since h(x) is an approximation of f(x) and is continuous and differentiable, the first partial

derivatives can be obtained by direct differentiation on h(x), i.e.,

dh(z) d df df
= L 0@ = (L o) @) = (f » D). 29
") L penm = (Lo = 1+ D) (29)
If the smoothing function #(z) is “compact” enough, then h(z) can approximate closely to
f(z) at z € {---,—1,0,1,-}. By the same token, the derivative of h(z) can approximate
that of f(z) at every = € Z, i.e.,

df (x) < dh(z) df

o o =)@ s (30)

4. Detecting edges based on abrupt normal changes

In [2, 22, 23], Mallat and his students have developed some pioneering works for

multiscale edge detection based on gray level changes. Here, we shall review part of their

12



works which will be useful in our work. Define two wavelet functions, ¢! (z,y) and ¥?(x,y)

[2, 22] where
1 _ ae(xay)
viz,y) = —g (31)
and
oy = L. (32

0(x,y) is a smoothing function whose integration over the full domain is equal to 1 and

converges to 0 at infinity. These two functions have to satisfy the following conditions:

/ / (x,y)dzdy =0 (33)

and

/ / (x,y)dzdy = 0. (34)

Let f(z,y) € L%(R). The so-called dyadic wavelet transform [2, 22] of f(z,y) at scale 27

along = and y directions can be represented, respectively, by

Wy f(x,y) = [+ (2,y), (35)

and
W3 fz,y) = [+ 93 (2,y), (36)
where 1y (z,y) = 550" (&, %) and ¢ (z,y) = 757¢*(%, &). In what follows, we shall use

the above mentioned dyadic wavelet transform to detect abrupt normal changes as edge

points.

From Equation(3), it is obvious that the vector of the normal change, dﬁ(u, v), can be

represented by the linear combination of the two bases on the du-dv plane, i.e., N,du+N,dv.

And, their associated weights are the gradients of N along du and dv directions, respectively.

Since the dyadic wavelet transform proposed by Mallat [2, 23] is able to calculate the

magnitudes of these gradients, we can apply their method directly to calculate dﬁ(u, v).

13



According to the formulation reported in [2, 23], the dyadic wavelet transform of N (u,v)

at scale 27 is

Wjﬁ(u, v) = WL N (u,v)du + W2 N (u, v)dv, (37)
where
WQIJN(u,v) = (Wyni(u,v), Wang(u,v), Wyns(u,v) ), (38)
and
W2 N(u,v) = (Weny(u,v), Wena(u,v), Weng(u,v) ). (39)

Since the Wjﬁ(u,v) vector also lies on the du-dv plane, the magnitude and argument
of W;N (u,v) can be directly computed. Referring to [2], the norms of W} N (u,v) and

w3 N (u,v) should be defined, respectively, as follows:

W5 N (w, 0)l| = /[ ma (s, 0)]2 + [Whima(u, 0)]2 + [Wgima(u, v)]2, (40)

and

W5 N (w, 0) | = \/IWZ (s, 0)]2 + (W (, 0)? + W (u, 0)] (41)

The magnitude of )/Vj]\7 (u,v) at scale 27 can thus be computed as follows:

My N (u,0) = \[IWh N (u, 0) |12+ [W2 N () ]2 (42)
Besides, the angle of Wj]\7(u, v) with respect to du direction is

Ay N (u, v) = argument(||W); N (u, v)|| + i|| W2 N (u, v)|)). (43)

From the above calculation, every point in a range image will obtain two values. One is the
magnitude of its normal change with respect to its certain neighbors, and the other is the
direction tendency of this point. Like other multiscale edge detection[2, 22, 24|, the edge
points can be determined by locating those local extrema whose normal change exceed a

preset threshold.

14



5. Experimental results

In the experiments, a number of synthetic and real range images were adopted as
test images to corroborate the proposed method. The four synthetic images were: agpart,
column, half sphere and taperoll. All of these images were of size 240 x 240. Besides, we also
used ten real images with different sizes. In the first stage of the experiment, the normal of
every point in a range image has to be decided. In order to make comparison, we used three
different methods, i.e., quadradic surface fitting, orthogonal and non-orthogonal wavelet-
based approaches, to calculate the normal values. This part we used one of the synthetic
images - “agpart”, as the test image. Experimental results of this part were reported in
Figure 6. Figure 6(a) showed the three normal components (ny, ny, n3) detected by applying
the quadratic surface fitting method. Figure 6(b) and (c) showed, respectively, the normal
components obtained by applying the orthogonal ( Daubechies’ wavelets with N = 3) and
the non-orthogonal wavelet-based approaches. Based on the derived normals, we then used
the dyadic wavelet transforms propsoed by Mallat et al.[2] to calculate the normal change
of every point in an image and selected those local extrema as edge points. Figure 7(a)-(c)
showed, respectively, the multiscale edges (2!, 22, and 2?) detected from three differently
approximated surfaces. Among them, Figure 7(a) showed the multiscale edges detected
from the normals generated by the quadratic surface fitting method. Figure 7(b) and (c)
were the multiscale edges detected when the approximation method were the orthogonal
and non-orthogonal wavelet-based approach, respectively. It is apparent that when the
quadratic surface fitting or the orthogonal wavelet-based approach was adopted to estimate
the normal values, the detected edges contained some spurious results or the original edges
delocalized from their original position. On the other hand, the edges detected from the
normals estimated by the non-orthogonal wavelet-based approach were the best results.
Figure 8(a)-(c) reported the results of the other three synthetic images based on the non-
orthogonal wavelet-based approximation. One thing to be noticed is that the first stage
of the proposed approach, i.e., the normal determination step, is crucial because a “poor”
estimation on normal values may result in irrecoverable effect on the edge detection stage. A

poor estimation method may smooth out the original image and thus delocalize edges from

15



their correct locations. By comparing the empirical results, the non-orthogonal wavelet-
based approximation was chosen because it produced the bset results out of the three

mentioned methods.

Figures 9 - 18 is a sequence of experiments based on real range images. All of these
results were obtained by applying the non-orthogonal wavelet-based approach to estimate
the normal values. From the results, we can find that most of crease ( roof ) edges were

detected correctly.

6. Conclusion and discussions

In this paper, we have proposed a new edge detection technique based on detecting
normal changes. We have found that by detecting normal changes, both step edges and
roof edges can be easily identified. Therefore, the new technique has been proven a more
promising method than other methods that based their detection criterion on depth or
curvature changes. The whole detection procedure is divided into two stages. In the
first stage, the normal of every point is decided. Since these data points are discrete, we
have proposed to use three different approximation techniques to approximate the original
surfaces. Based on the approximated continuous surfaces, the normals of all points on the
surfaces can be computed. Then, we have applied the dyadic wavelet transforms to calculate
the normal change value of every point on the surfaces. Finally, the edge points can be
determined by locating those local extrema whose normal change values exceed a preset
threshold. Experimental results using both synthetic and real images have demonstrated
that the proposed method is indeed superb in detecting both step and roof ( or crease )

edges in a range image.
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Fig. 1: Relations between a surface point, its corresponding parameter coordinate and Gauss map.
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Fig. 2: An object viewed from different orientations may result in different edge types.
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Fig. 3: Edge responses of step edges and roof edges.
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Fig. 4: Five different type of edges and their corresponding Gauss mappings.
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Fig. 5: Four synthetic range images.
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Fig. 6: Three component of normals (ni,n2,m3) estimated by using (a) quadratic surface fitting (b)
orthogonal wavelet-based approach with vanishing moment N=3, and (c) non-orthogonal wavelet-based
approach.
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Fig. 7: Detected edge points at different scales by using (a) quadratic surface fitting (b) orthogonal wavelet-
based approach with vanishing moment N=3, and (c) non-orthogonal wavelet-based approach.
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Fig. 8: Detected edge points at different scales from the other three synthetic images - (a) column (b)
halfsph (c) taperoll.
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(b) Edge points at scale 2*

(a) Origina range image

(d) Edge points at scale 2
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(c) Edge points at scale 2

Fig. 9: Detected edge points at different scales from real images - “ball2+propane”
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Fig. 10: Detected edge points at different scales from real images - “adapter+curvblock”
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(a) Origina range image

(b) Edge points at scale 2*

(c) Edge points at scale 2 2
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(d) Edge points at scale 23

Fig. 11: Detected edge points at different scales from real images - “cap+box2inch”
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Fig. 12: Detected edge points at different scales from real images - “opticalStand”
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(a) Original range image

(c) Edge points at scale 22 (d) Edge points at scale 23

Fig. 13: Detected edge points at different scales from real images - “taperoll3”

31



(@) Original range image

(c) Edge points at scale 22

Fig. 14: Detected edge points at different scales from real images - “taperoll2”
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(a) Origina range image

(c) Edge points at scale 22 (d) Edge points at scale 2°

Fig. 15: Detected edge points at different scales from real images - “widget-1”
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(@) Origina range image (b) Edge points at scale 2 !

(c) Edge points at scale 22 (d) Edge points at scale 22

Fig. 16: Detected edge points at different scales from real images - “widget-2”
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Fig. 17: Detected edge points at different scales from real images - “synthcyl5”
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(a) Original range image
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(c) Edge points at scale 2 °

Fig. 18: Detected edge points at different scales from real images - “agpart2”

(d) Edge points at scale 23
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