您的瀏覽器不支援JavaScript語法,網站的部份功能在JavaScript沒有啟用的狀態下無法正常使用。

中央研究院 資訊科學研究所

活動訊息

友善列印

列印可使用瀏覽器提供的(Ctrl+P)功能

學術演講

:::

From the Hardness of Detecting Superpositions to Cryptography: Quantum Public Key Encryption and Commitments

  • 講者Minki Hhan 博士 (韓國高等研究院)
    邀請人:鐘楷閔
  • 時間2023-05-23 (Tue.) 10:00 ~ 12:00
  • 地點資訊所新館106演講廳
摘要
Recently, Aaronson et al. (arXiv:2009.07450) showed that detecting interference between two orthogonal states is as hard as swapping these states. While their original motivation was from quantum gravity, we show its applications in quantum cryptography. 1. We construct the first public key encryption scheme from cryptographic non-abelian group actions. Interestingly, ciphertexts of our scheme are quantum even if messages are classical. This resolves an open question posed by Ji et al. (TCC ’19). We construct the scheme through a new abstraction called swap-trapdoor function pairs, which may be of independent interest. 2. We give a simple and efficient compiler that converts the flavor of quantum bit commitments. More precisely, for any prefix X, Y {computationally,statistically,perfectly}, if the base scheme is X-hiding and Y-binding, then the resulting scheme is Y-hiding and X-binding. Our compiler calls the base scheme only once. Previously, all known compilers call the base schemes polynomially many times (Crépeau et al., Eurocrypt ’01 and Yan, Asiacrypt ’22). For the security proof of the conversion, we generalize the result of Aaronson et al. by considering quantum auxiliary inputs.